УСТРОЙСТВА УПРАВЛЕНИЯ И СБОРА ДАННЫХ СЕРИЙ НСR, МТU, НС, МСU

КОНТРОЛЛЕРЫ ВВОДА/ВЫВОДА СИГНАЛОВ MCU-AX/(DX), MCU-AY/(DY)

Руководство по эксплуатации ПРОМ.421455.060-05 РЭ

2023

Содержание

1	Описание устройства 5						
	1.1 Назначение						
	1.2	Модификации	7				
	1.3	Базовые модули	12				
	1.4	Модули расширения	20				
	1.5	Параметры надежности	53				
	1.6	Индикация	54				
	1.7	ЭМС	59				
	1.8	Сеть	60				
	1.9	Упаковка	61				
2	Исп	юльзование по назначению	62				
	2.1	Высоковольтные испытания и испытания на электрическую прочность	62				
	2.2	Указания по эксплуатации	62				
	2.3	Эксплуатационные ограничения	62				
	2.4	Подготовка к монтажу	63				
	2.5	Общие указания по монтажу	63				
	2.6	Монтаж/демонтаж устройства	64				
	2.7	Монтаж/демонтаж модуля	65				
3	Tex	ническое обслуживание и ремонт	66				
	3.1	Общие указания	66				
	3.2	Меры безопасности	66				
	3.3	Порядок технического обслуживания	66				
4	Рем	ЮНТ	67				
5	Хра	нение	68				
6	Тра	нспортирование	69				
7	Утилизация 70						
8	Гар	антии изготовителя	71				
Π_1	оило	жение А Программное обеспечение	72				
приложение в пастроика модулеи расширения 82							
Приложение В Режимы управления линией электрообогрева 101							
Π	Приложение Г Настройка параметров линии электрообогрева 103						

Настоящее руководство по эксплуатации (далее - РЭ) контроллеров серии MCU-AX(DX), MCU-AY(DY) (далее устройства) предназначено для обеспечения потребителя сведениями, необходимыми для правильной эксплуатации устройства. РЭ содержит технические данные, описание работы, указания по использованию, техническому обслуживанию, упаковке, транспортированию и хранению.

До начала работы с устройством необходимо ознакомиться с настоящим РЭ. Производитель оставляет за собой право вносить любые изменения без уведомления, не ухудшающие характеристики устройства в целом.

Настоящее РЭ предназначено для персонала, осуществляющего установку, наладку и обслуживание устройств.

РЭ распространяет действие на устройства с базовыми модулями MCU-AX(DX)(2R), MCU-AY(DY)(2C/RC/2R) и модулями расширения для ввода/-вывода сигналов.

ИЗГОТОВИТЕЛЬ ООО «ПРОМ-ТЭК».

При использовании устройства в составе комплектного оборудования и проведении высоковольтных испытаний/испытаний прочности изоляции этого оборудования необходимо отключить все подводящие проводники к устройству.

При проведении высоковольтных испытаний/испытаний прочности изоляции устройства необходимо руководствоваться техническими характеристиками на каждый отдельный модуль.

1 ОПИСАНИЕ УСТРОЙСТВА

Устройства изготовлены в соответствии ТУ 4217-013-20676432-2015.

Конструктивно устройства представляют базовый модуль в одном из вариантов исполнения по типу напряжения питания, который дополняется модулями расширения ввода/вывода.

«Горячее» резервирование базовых модулей и модулей расширения ввода/вывода не предусмотрено.

Отказ канала модуля не влияет на работоспособность всего устройства и других каналов модуля.

Устройства выполнены в корпусе из пластмассы, не поддерживающей горение. Устройства предназначены для крепления на DIN-рейку.

Обмен данными с системой контроля/управления, в зависимости от варианта исполнения, осуществляется через интерфейс RS-485, CAN или Ethernet 100Base-TX.

Отказ канала интерфейса связи не влияет на работоспособность всего устройства и других каналов модуля.

Настройка параметров и режимов работы могут быть произведены через Web-интерфейс и сервисный интерфейс USB. Через интерфейс USB также осуществляется обновление микропрограммного обеспечения.

Web-интерфейс и сервисное ПО русифицированы.

Устройства обеспечивают выполнение прикладных программ, созданных с помощью графической среды разработки «KSE-PLC IDE» на языках стандарта МЭК 61131-3. Предусмотрена возможность разработки собственных функциональных блоков.

Устройства зарегистрированы в Федеральном информационном фонде по обеспечению единства измерений, рег. № 67073-17.

Установка, обновление и настройка устройств описываются в Приложениях Б-Д.

1.1 Назначение

Устройства предназначены для решения задач мониторинга, управления и регулирования в системах автоматизации и могут быть использованы как в качестве модулей распределенного ввода/вывода, так и в качестве программируемых логических контроллеров.

Устройства позволяют создавать как автономные системы управления, так и системы управления, работающие в общей информационной сети автоматизированных систем диспетчерского контроля и управления технологическими процессами.

Схемы подключения приведены в п. 1.3.

1.2 Модификации

1.2.1 Модификации базовых модулей МСU-хХ:

Модификации базовых модулей различаются по напряжению питания, интерфейсу связи и наличию дополнительных опций.

MCU-AX

- Два порта 100Base-TX (встроенный коммутатор)
- Напряжение питания 230 В переменного тока

MCU-AX2R

- Два порта 100Base-TX (встроенный коммутатор)
- Два интерфейса RS-485
- Напряжение питания 230 В переменного тока

MCU-DX

- Два порта 100Base-TX (встроенный коммутатор)
- Напряжение питания 24 В постоянного тока

MCU-DX2R

- Два порта 100Base-TX (встроенный коммутатор)
- Два интерфейса RS-485
- Напряжение питания 24 В постоянного тока

Ниже, на рис. 1.1, приведены все возможные модификации базового модуля MCU-xX в комбинации с модулями расширения и опциями устройства.

Информация для заказа

Рисунок 1.1 – Информация для заказа

1.2.2 Модификации базовых модулей МСU-хҮ:

Модификации базовых модулей различаются по напряжению питания, интерфейсу связи и наличию дополнительных опций.

MCU-AY

- Два порта 100Base-TX (встроенный коммутатор)
- Напряжение питания 230 В переменного тока

MCU-AY2R

- Два порта 100Base-TX (встроенный коммутатор)
- Два интерфейса RS-485
- Напряжение питания 230 В переменного тока

MCU-AYRC

- Два порта 100Base-TX (встроенный коммутатор)
- \bullet Один интерфейс RS-485
- Один интерфейс САМ
- Напряжение питания 230 В переменного тока

MCU-AY2C

- Два порта 100Base-TX (встроенный коммутатор)
- \bullet Два интерфейса CAN
- Напряжение питания 230 В переменного тока

MCU-DY

- Два порта 100Base-TX (встроенный коммутатор)
- Напряжение питания 24 В постоянного тока

MCU-DY2R

- Два порта 100Base-TX (встроенный коммутатор)
- \bullet Два интерфейса RS-485
- Напряжение питания 24 В постоянного тока

MCU-DYRC

- Два порта 100Base-TX (встроенный коммутатор)
- Один интерфейс RS-485
- Один интерфейс САМ
- Напряжение питания 24 В постоянного тока

MCU-DY2C

- Два порта 100Base-TX (встроенный коммутатор)
- \bullet Два интерфейса CAN
- Напряжение питания 24 В постоянного тока

Ниже, на рис. 1.2, приведены все возможные модификации базового модуля MCU-хY в комбинации с модулями расширения и опциями устройства.

Информация для заказа

Рисунок 1.2 – Информация для заказа

1.2.3 Модификации модулей расширения

Максимальное число модулей расширения – восемь.

• MCU-0: заглушка для установки в незанятые модулями расширения слоты с целью резервирования или разделения

- MCU-1-10HDI: 10 каналов дискретного ввода сигналов 230 В переменного тока
 - MCU-2-10DI: 10 каналов дискретного ввода сигналов 24 В постоянного тока
- MCU-3-8AI: 8 каналов ввода унифицированных аналоговых сигналов 0(4)..20 мА постоянного тока
 - МСИ-4-8СТІ: 8 каналов аналогового ввода сигналов 0..65 мА переменного

тока частотой 50 Гц

• MCU-5-4TI: 4 канала аналогового ввода сигналов типа термопреобразователь сопротивления по ГОСТ 6651 или термопар по ГОСТ Р 8.585

• MCU-6-8VI: 8 каналов аналогового ввода унифицированных сигналов напряжения 0..10 В постоянного тока

• MCU-7-4AO: 4 канала аналогового вывода унифицированных сигналов 0(4)..20мА постоянного тока или напряжения 0...10 В постоянного тока в зависимости от режима

• MCU-8-4RO: 4 канала дискретного вывода типа перекидного контакта электромеханического реле с нагрузочной способностью до 5 А

• MCU-9-10HDO: 10 каналов дискретного вывода типа NO контакт твердотельного реле с нагрузочной способностью до 500 мA (до 250 В переменного тока или до 350 В постоянного тока)

• MCU-F: одноканальный модуль-регулятор со встроенным графическим LEDдисплеем

• MCU-EM-H: модуль-измеритель параметров нагрузки. Тип подключения трансформаторный. Номинальный переменный ток в зависимости от поддиапазона 1 или 5 А. Метрологические характеристики при измерении активной электрической энергии соответствуют требованиям, установленным в ГОСТ 31819.22 для счетчиков класса точности 0,2S. Метрологические характеристики при измерении реактивной электрической энергии соответствуют требованиям, установленным в ГОСТ 31819.23 для счетчиков класса точности 1

• MCU-EM-L: модуль-измеритель параметров нагрузки. Тип подключения трансформаторный. Номинальный входной переменный ток 65¹ или 250 мА. Метрологические характеристики при измерении активной электрической энергии соответствуют требованиям, установленным в ГОСТ 31819.21 для счетчиков класса точности 1. Метрологические характеристики при измерении реактивной электрической энергии соответствуют требованиям, установленным в ГОСТ 31819.23 для счетчиков класса точности 1

• MCU-S-4R: Модуль последовательных интерфейсов 4xRS-485.

¹ Поддиапазон не внесен в ОТ СИ, поверка СИ в нем не предусмотрена.

Пример заказа:

MCU-AXRW-11359999-О: Напряжение питания 230 В, 50 Гц переменного тока, 2 порта 100Base-TX (встроенный коммутатор), один интерфейс RS-485, один интерфейс 1-Wire, 20 каналов дискретного ввода сигналов 230 В переменного тока, 8 каналов аналогового ввода сигналов 0(4)...20 мА постоянного тока, 4 канала аналогового ввода сигналов типа термо-преобразователь сопротивления по ГОСТ 6651 или термопар по ГОСТ Р 8.585, 40 каналов дискретного вывода типа NO контакт твердотельного реле с нагрузочной способностью до 500 мА (до 250 В переменного или до 350 В постоянного тока), наличие дополнительной влагозащиты.

1.3 Базовые модули

1.3.1 Внешний вид устройства

Внешний вид устройств MCU-AX(DX), MCU-AY(DY) приведен на рисунках 1.3, 1.4.

Базовый модуль Модули расширения Рисунок 1.3 – Внешний вид устройства MCU-AX(DX)

Рисунок 1.4 – Внешний вид устройства MCU-AY(DY)

1.3.2 Лицевая панель базового модуля

Внешний вид лицевой панели приведен на рисунке 1.5.

Рисунок 1.5 – Лицевая панель

Маркировочные таблички 1.3.3

На рисунке 1.6 изображены маркировочные таблички для модификаций МСU-АХ, МСU-АУ и MCU-DX, MCU-DY.

Рисунок 1.6 – Маркировочная табличка устройств

1.3.4 Габаритные размеры

Габаритные размеры базового модуля и модулей расширения приведены на рисунке 1.7 и в таблице 1.1.

Рисунок 1.7 – Габаритные размеры устройства

Таблица 1.1	– Габаритные	размеры
-------------	--------------	---------

Описание	А, мм	В, мм	С, мм
Базовый модуль	35,2		
Базовый модуль+1 модуль расширения	54,6		
Базовый модуль+2 модуля расширения	72,8	-	
Базовый модуль+3 модуля расширения	91,0	не более 111,0	113,5
Базовый модуль+4 модуля расширения	109,2		
Базовый модуль+5 модулей расширения	127,4		
Базовый модуль+6 модулей расширения	145,6		
Базовый модуль+7 модулей расширения	163,8	-	
Базовый модуль+8 модулей расширения	182,0		

1.3.5 Схемы подключения

Схемы подключения приведены на рисунке 1.8, 1.9.

Рисунок 1.8 – Схемы подключения MCU-хX

Рисунок 1.10 – Схемы подключения МСИ-хҮ

1.3.6 Основные параметры и характеристики

Основные параметры и технические характеристики базового модуля MCU-xX (MCU-xY) приведены в таблице 1.2.

Наименование характеристики	Значение характеристики			
Основные характеристики				
	MCU-AX(DX) MCU-AY(DY)			
Тип контроллера	Модульно-компонуемый			
Частота процессора, МГц, не менее	600			
Цикл ЦПУ при максимальной загрузке,	100			
мс, не более				
Объем оперативной памяти, не менее	256 Мб 4 Гб			
Количество параметров ввода-вывода,	2048			
обрабатываемых одним ЦПУ, не более				
Время опроса входного аналогового ка-	20			
нала, мс				
Время опроса входного дискретного ка-	2			
нала, мс				
Время выполнения цикла управления,	100			
мс, не более				
Длительность цикла прикладных про-	100			
грамм, мс, не более				
Время полного перезапуска контролле-	25			
ра после перерыва электропитания, с, не				
более				
Сохранение управляющих программ,	Не менее срока службы устройства			
данных и конфигурации контроллера				
при отсутствии электропитания				
Коммуникаци	онные характеристики			
Ethernet				
Тип	100BASE-TX			
Количество, шт.	2 порта (встроенный коммутатор)			
Протоколы передачи данных*	Modbus TCP, MЭК 60870-5-104**, МЭК-61850**			
Исполнение 2R				
Тип	RS-485			
Количество, шт.	2			
Протоколы передачи данных*	Modbus RTU			
Скорость обмена, кбит/с	9,6115,2			

Таблица 1.2 – Технические характеристики

Коммуникаци	онные характеристики			
Исполнение RC				
Тип	RS-485	CAN		
Количество, шт.	1	1		
Протоколы передачи данных*	Modbus RTU	CANopen		
Скорость обмена, кбит/с	9,6115,2	501000		
Исполнение 2С				
Тип	CAN			
Количество, шт.	2			
Протоколы передачи данных*	CANopen			
Скорость обмена, кбит/с	501000			
	Питание			
Исполнение А				
- от источника переменного тока (часто-	100264 (4763)			
та Гц), В				
- от источника постоянного тока, В	120370			
- потребляемая мощность, B·A, не более	35			
Исполнение D				
- от источника постоянного тока, В	1030			
- потребляемая мощность, Вт	12,5			
Гальваническая изоляция (электрическая прочность)				
вход питана	ия - системная шина			
Исполнение А, В	2500 AC			
Исполнение D, B	1500 DC			
Проч	ие параметры			
Требования ЭМС	Согласно ГОСТ 30804.6.2-2013,			
	ГОСТ 30804.6.4-2013			
Степень защиты корпуса ИР20				
Диапазон рабочих температур, °С -40+60				
Габаритные размеры (В× Ш), мм	111,0×35,2			
Масса кг, не более	0,3			
*Типы поддерживаемых протоколов могут дополняться				

* - по запросу.

1.4 Модули расширения

Настройка модулей расширения описана в приложении Б.

1.4.1 Модуль расширения MCU-1-10HDI

• 10 каналов дискретного ввода сигналов 230 В переменного тока. Внешний вид и схема подключения приведены на рис. 1.11 и рис. 1.12. Технические характеристики приведены в таблице 1.3.

— 17,6 **—**

Рисунок 1.11 – Внешний вид модуля расширения MCU-1-10HDI

Рисунок 1.12 – Схема подключения модуля расширения MCU-1-10HDI

Таблица 1.3 – Основные параметры и технические характеристики модуля расширения типа 1

Наименование характеристики	Значение характеристики				
Каналы дискретного ввода сигналов 230 1	Каналы дискретного ввода сигналов 230 В переменного тока				
Количество, шт.	10				
Уровень сигнала «лог. 1» переменного тока, В	90264				
Уровень сигнала «лог. 0» переменного тока, В	040				
Типовой входной ток при номинальном напряжении	3,4				
230 В, мА					
Задержка срабатывания при номинальном напряжении	60				
230 В, не более, мс					
Защита от дребезга контактов	настраиваемая, с определением				
	периода выборки 10120 мс				
Гальваническая изоляция (эл. прочность)					
Тип	2 группы по 5 каналов				
Между группами, В	2500 AC				
Каналы дискретного ввода – системная шина, В	2500 AC				
Прочие параметры					
Степень защиты корпуса	IP20				
Габаритные размеры (В \times Ш), мм, не более	$111,0 \times 17,6$				
Масса, кг, не более	0,15				
Диапазон рабочих температур, °С	от -40 до +60				

1.4.2 Модуль расширения MCU-2-10DI

10 каналов дискретного ввода сигналов 24 В постоянного тока.
Внешний вид и схема подключения приведены на рис. 1.13 и рис. 1.14.
Технические характеристики приведены в таблице 1.4.

— 17,6 —

Рисунок 1.13 – Внешний вид модуля расширения MCU-2-10DI

Рисунок 1.14 – Схема подключения модуля расширения MCU-2-10DI

Таблица	1.4 –	Основные	параметры	и техн	нические	характ	теристики	модуля
расширен	ия ті	ипа 2						

Наименование характеристики	Значение характеристики			
Каналы дискретного ввода сигналов 24 В постоянного тока				
Количество, шт.	10 (неполярных)			
Уровень сигнала «лог. 1», В	1030			
Уровень сигнала «лог. 0», В	05			
Типовой входной ток при номинальном напряжении 24 В,	5,2			
мА				
Задержка срабатывания, мс, не более	2			
Защита от дребезга контактов	Настраиваемая, с определением			
	периода выборки 2128 мс			
Гальваническая изоляция (электрическая прочность)				
Тип	2 группы по 5 каналов			
Каналы дискретного ввода - системная шина, В	500 DC			
Прочие параметры				
Степень защиты корпуса	IP20			
Габаритные размеры (В×Ш), мм	$111,0 \times 17,6$			
Масса, кг, не более	0,15			
Диапазон рабочих температур, °С	-40+60			

1.4.3 Модуль расширения MCU-3-8AI

• 8 каналов ввода унифицированных аналоговых сигналов 0(4)...20 мА постоянного тока. Внешний вид и схема подключения приведены на рис. 1.15 и рис. 1.16. Технические характеристики приведены в таблице 1.5.

— 17,6 —

Рисунок 1.15 – Внешний вид модуля расширения MCU-3-8AI

Рисунок 1.16 – Схема подключения модуля расширения MCU-3-8AI

Таблица 1.5 – Основные параметры и технические характеристики модуля расширения типа 3

Наименование характеристики	Значение характеристики			
Каналы аналогового ввода сигналов 0(4)20 мА постоянного тока				
Количество, шт.	8			
Диапазон измерений силы постоянного тока, мА	022,5			
Пределы допускаемой приведенной к диапазону измере-	$\pm 0,1$			
ний основной погрешности измерений силы постоянного				
тока, %				
Пределы допускаемой приведенной к диапазону измере-	$\pm 0,05$			
ний дополнительной погрешности измерений силы посто-				
янного тока от изменения температуры окружающей сре-				
ды в диапазоне рабочих температур на каждые 10°C, $\%$				
Входное сопротивление $(\pm 2\%)$, Ом	255			
Гальваническая изоляция (электричес	кая прочность)			
Тип	Групповая			
Каналы аналогового ввода - системная шина, В	500 DC			
Прочие параметры				
Защита от перенапряжения, В	До 30			
Период преобразования (включая фильтр), мс, не более	20			
Степень защиты корпуса	IP20			
Габаритные размеры (В×Ш), мм	$105,0 \times 17,6$			
Масса, кг, не более	0,15			
Диапазон рабочих температур,°С	-40+60			

1.4.4 Модуль расширения МСU-4-8СТІ

• 8 каналов аналогового ввода сигналов 0...65 мА переменного тока частотой 50Гц. Внешний вид и схема подключения приведены на рис. 1.17 и рис. 1.18. Технические характеристики приведены в таблице 1.6.

— 17,6 —

Рисунок 1.17 – Внешний вид модуля расширения MCU-4-8CTI

Рисунок 1.18 – Схема подключения модуля расширения MCU-4-8CTI

Таблица 1.6 – Основные параметры и технические характеристики модуля расширения типа 4

Наименование характеристики	Значение харак-			
	теристики			
Каналы аналогового ввода сигналов переменного к	тока			
Количество, шт.	8			
Диапазоны измерения тока				
Диапазон 1*				
Диапазон измерений силы переменного тока частотой (50±0,4) Гц,	065			
мА				
Пределы допускаемой приведенной к диапазону измерений ос-	$\pm 0,5$			
новной погрешности измерений силы переменного тока частотой				
(50,0±0,4) Гц, %				
Пределы допускаемой приведенной к диапазону измерений допол-	$\pm 0,1$			
нительной погрешности измерений силы переменного тока часто-				
той (50,0±0,4) Гц от изменения температуры окружающей среды				
в диапазоне рабочих температур, на каждые 10° C, $\%$				
Входное сопротивление,(±20%), Ом	28			
Диапазон 2*				
Диапазон измерений силы переменного тока частотой (50±0,4) Гц,	0100			
мкА				
Пределы допускаемой приведенной к диапазону измерений ос-	$\pm 2,0$			
новной погрешности измерений силы переменного тока частотой				
(50,0±0,4) Гц, %				
Пределы допускаемой приведенной к диапазону измерений допол-	$\pm 0,25$			
нительной погрешности измерений силы переменного тока часто-				
той (50,0±0,4) Гц от изменения температуры окружающей среды				
в диапазоне рабочих температур, на каждые 10° C, $\%$				
Гальваническая изоляция (электрическая прочно	сть)			
Тип	Групповая			
Каналы дискретного ввода - системная шина, В	500 DC			
Прочие параметры				
Защита от перенапряжения, В	До 30			
Период преобразования (включая фильтр), мс, не более	20			
Степень защиты корпуса	IP20			
Габаритные размеры (В×Ш), мм	$111,0 \times 17,6$			
Масса, кг, не более	0,15			
Диапазон рабочих температур, °С	-40+60			

*Каналы измерения тока, объединенные попарно в один разъем, должны находиться в одном режиме: Диапазон 1 или Диапазон 2 (переключатели в одном положении).

1.4.5 Модуль расширения MCU-5-4TI

• 4 канала аналогового ввода сигналов типа термопреобразватель сопротивления или термопара.

Внешний вид и схема подключения приведены на рис. 1.19 и рис. 1.20.

Технические характеристики приведены в таблице 1.7.

Основные метрологические характеристики каналов аналогового ввода сигналов термопреобразователей сопротивления по ГОСТ 6651 и термопар по ГОСТ Р 8.585 в таблице 1.8.

— 17,6 —

Рисунок 1.19 – Внешний вид модуля расширения MCU-5-4TI

Рисунок 1.20 – Схема подключения модуля расширения MCU-5-4TI

Таблица 1.7 – Основные параметры и технические характеристики модуля расширения типа

Наименование характеристики	Значение характеристики	
Каналы аналогового ввода сигналов датч	иков температуры	
Количество подключаемых каналов, шт.	4	
Метрологические характеристики каналов аналогового	в соответствии с табл. 1.8	
ввода сигналов датчиков температуры		
Схема подключения термопреобразователей сопротивле-	Трехпроводная	
ния		
Гальваническая изоляция (эл. п	рочность)	
Тип	Групповая	
Каналы аналогового ввода – системная шина, В	500 DC	
Прочие параметры		
Защита от перенапряжения, В	До 30	
Период преобразования (включая фильтр), мс, не более	200	
Степень защиты корпуса	IP20	
Габаритные размеры (В \times Ш), мм, не более	$111,0 \times 17,6$	
Масса, кг, не более	0,15	
Диапазон рабочих температур, °С	от -40 до +60	

Таименование	диапазон из- мерений, °С	Пределы допускае- мой приведенной к диапазону измерений основной погрешности измерений сигналов от термопреобразователей сопротивления по ГОСТ 6651-2009 в температур- ном эквиваленте, %	Пределы допускаемой приведен- ной к диапазону измерений до- полнительной погрешности из- мерений сигналов от термопре- образователей сопротивления по ГОСТ 6651-2009 в температур- ном эквиваленте от изменения температуры окружающей сре- ды в диапазоне рабочих темпера- тур на каждые 10 °C, %
		отивления по ГОСТ о	001-2009
$Cu_{50}(\alpha = 0.00426^{-3}C^{-1})$	-50+200		
$Cu100(\alpha=0.00426^{-9}C^{-1})$	-50+200		
$Cu500(\alpha=0.00426 \text{ °C}^{-1})$	-50+200		
$Cu1000(\alpha=0.00426~^{\circ}C^{-1})$	-50+200		
$\frac{50M(\alpha=0.00428 \text{ °C}^{-1})}{100M(\alpha=0.00428 \text{ °C}^{-1})}$	-180+200	-	
$\frac{100M(\alpha=0.00428 \text{ °C}^{-1})}{100M(\alpha=0.00428 \text{ °C}^{-1})}$	-180+200	-	
$500M(\alpha = 0.00428 \text{ °C}^{-1})$	-180+200	-	
$1000M(\alpha = 0.00428 \ ^{\circ}C^{-1})$	-180+200		
Pt50(α =0,00385 °C ⁻¹)	-200+850		
Pt100(α =0,00385 °C ⁻¹)	-200+850	+0.2	+0.025
Pt500(α =0,00385 °C ⁻¹)	-200+850		
Pt1000(α =0,00385 °C ⁻¹)	-200+850		
$50\Pi(\alpha=0,00391 \ ^{\circ}\mathrm{C}^{-1})$	-200+850		
$100\Pi(\alpha=0,00391 \ ^{\circ}\mathrm{C}^{-1})$	-200+850		
$500\Pi(\alpha=0,00391 \ ^{\circ}\mathrm{C}^{-1})$	-200+850		
$1000\Pi(\alpha=0,00391 \ ^{\circ}\mathrm{C}^{-1})$	-200+850		
Ni100(α =0,00617 °C ⁻¹)	-60+180		
Ni120(α =0,00617 °C ⁻¹)	-60+180		
Ni500(α =0,00617 °C ⁻¹)	-60+180		
Ni1000(α =0,00617 °C ⁻¹)	-60+180		

Таблица 1.8 – Основные метрологические характеристики

Продолжение таблицы 1.8

Наименование	Диапазон из- мерений, °С	Пределы допускаемой приведенной к диапазону измерений основной погрешности измерений сигналов от термопар по ГОСТ 8.585-2001 в температурном эквива- ленте, %	Пределы допускаемой приведен- ной к диапазону измерений до- полнительной погрешности из- мерений сигналов от термопар по ГОСТ Р 8.585-2001 в тем- пературном эквиваленте от из- менения температуры окружаю- щей среды в диапазоне рабочих температур на каждые 10 °C, %
ТЖК (1)	-210 ± 1200		
$\frac{\mathrm{TXA}\left(\mathbf{S}\right)}{\mathrm{TXA}\left(\mathbf{K}\right)}$	-210+1200 -200 ± 1372		
THH (N)	-200+1372 -200+1300		
TXK (L)	-200+1000	_	
ТХКн (Е)	-200+1000	-	
ТПП (R)	-50+1768		
ТМК (Т)	-200+400	$\pm 0,25$	$\pm 0,025$
TBP (A1)	0+2500		
TBP (A2)	0+1800		
TBP (A3)	0+1800		
ТПП (S)	-50+1768		
ТПР (В)	+200+1820		
Пределы допускаемой абсолютной основной			
погрешности компенсации температуры			$\pm 1,5$
холодного спая, °С			
Пределы допускаемой абсолютной			
дополнительной погрешности компенсации			
температуры холодного спая от			$\pm 0,2$
изменения температуры окружающей			
среды в диапазоне рабочих температур,			
на каждые 10 °C, °C			

1.4.6 Модуль расширения MCU-6-8VI

• Восемь каналов аналогового ввода унифицированных сигналов напряжения 0...10 В постоянного тока.

Внешний вид и схема подключения приведены на рис. 1.21 и рис. 1.22.

Технические характеристики приведены в таблице 1.9.

─ 17,6 ⊢

Рисунок 1.21 – Внешний вид модуля расширения MCU-6-8VI

Рисунок 1.22 – Схема подключения модуля расширения MCU-6-8VI

Таблица 1.9 – Основные параметры и технические характеристики модуля расширения типа

Наименование характеристики	Значение характеристики		
Каналы аналогового ввода сигналов 010 В постоянного тока			
Количество, шт.	8		
Диапазон измерений напряжения постоянного тока, В	012		
Пределы допускаемой приведенной к диапазону измере-	$\pm 0,1$		
ний основной погрешности измерений напряжения посто-			
янного тока, %			
Пределы допускаемой приведенной к диапазону измере-	$\pm 0,05$		
ний дополнительной погрешности измерений напряже-			
ния постоянного тока от изменения температуры окру-			
жающей среды в диапазоне рабочих температур на каж-			
дые 10 °C, %			
Входное сопротивление ($\pm 1\%$), Ом	225		
Гальваническая изоляция (эл. прочность)			
Тип	Групповая		
Каналы аналогового ввода - системная шина, В	500 DC		
Прочие параметры			
Защита от перенапряжения, В	До 30		
Период преобразования (включая фильтр), мс, не более	20		
Степень защиты корпуса	IP20		
Габаритные размеры (В ×Ш), мм	$105,0 \times 17,6$		
Масса, кг, не более	0,15		
Диапазон рабочих температур,°С	-40+60		

1.4.7 Модуль расширения МСU-7-4АО

• 4 канала аналогового вывода унифицированных сигналов 0(4)...20 мА постоянного тока или напряжения 0...10 В постоянного тока.

Режим «Воспроизведения напряжения» реализован с версии платы 2.0 и выше. Переключение режимов происходит механически. Смещение переключателя в положение «*ON»* сменяет режим «Воспроизведения тока» на режим «Воспроизведения напряжения».

Шаправление переключения в положение «ON» смотреть на переключателе, нумерацию каналов - на плате.

Внешний вид и нумерация каналов на плате приведены на на рис. 1.23 и 1.24 Схема подключения приведена на рис. 1.25.

Технические характеристики приведены в таблице 1.10.

— 17,6 —

Рисунок 1.23 – Внешний вид модуля расширения MCU-7-4AO

Рисунок 1.24 – Нумерация каналов

Рисунок 1.25 – Схема подключения модуля расширения МСU-7-4АО

Таблица 1.10 – Основные параметры и технические характеристики модуля расширения типа 7

Наименование характеристики	Значение характеристики
Каналы аналогового вывода сигналов 0(4)20	мА постоянного тока
или 0-10 В постоянного т	юка
Количество,шт.	4
Режим 0(4)20 мА	
Диапазон воспроизведений силы постоянного тока, мА	020
Пределы допускаемой приведенной к диапазону воспро-	$\pm 0,1$
изведений основной погрешности воспроизведений силы	
постоянного тока, %	
Пределы допускаемой приведенной к диапазону воспро-	$\pm 0,05$
изведений дополнительной погрешности воспроизведе-	
ний силы постоянного тока от изменения температуры	
окружающей среды в диапазоне рабочих температур на	
каждые 10°С, %	
Максимальное сопротивление нагрузки, не более, Ом	510

Режим 010 В			
Диапазон воспроизведений напряжения постоянного то-	010		
ка, В			
Предел допускаемой приведенной к диапазону воспроиз-	$\pm 0,2$		
ведений основной погрешности воспроизведений напря-			
жения постоянного тока, %			
Предел допускаемой приведенной к диапазону воспроиз-	± 0.05		
ведений дополнительной погрешности воспроизведений			
напряжения постоянного тока от изменения температу-			
ры окружающей среды в диапазоне рабочих температур			
на каждые 10°С, %			
Выходное сопротивление источника напряжения, Ом	500		
Сопротивление нагрузки, не менее, кОм	1000		
Период обновления выходных данных, мс, не более	8		
Гальваническая изоляция (эл. прочность)			
Тип	Групповая		
Каналы аналогового ввода - системная шина, В	500 DC		
Прочие параметры			
Степень защиты корпуса	IP20		
Габаритные размеры (В ×Ш), мм	$105,0 \times 17,6$		
Масса, кг, не более	0,15		
Диапазон рабочих температур,°С	-40+60		
1.4.8 Модуль расширения MCU-8-4RO

• 4 канала дискретного вывода типа перекидного контакта электромеханического реле с нагрузочной способностью до 5 А.

Внешний вид и схема подключения приведены на рис. 1.26 и рис. 1.27.

Технические характеристики приведены в таблице 1.11.

— 17,6 —

Рисунок 1.26 – Внешний вид модуля расширения MCU-8-4RO

Рисунок 1.27 – Схема подключения модуля расширения MCU-8-4RO

Таблица 1.11 – Основные параметры и технические характеристики модуля расширения типа
 8

Наименование характеристики	Значение характеристики		
Канал дискретного вывода сигналов			
Количество, шт.	4		
Тип	Релейный, перекидной		
Нагрузочная способность, А	5		
Коммутируемое напряжение переменного/постоянного	264/30		
тока, В			
Ресурс под нагрузкой (количество срабатываний) не ме-	100 000		
нее			
Задержка срабатывания, мс, не более	10		
Гальваническая изоляция (электрическая прочность)			
Каналы вывода - системная шина, В	2500 AC		
Между каналами, В	2500 AC		
Прочие параметры			
Степень защиты корпуса	IP20		
Габаритные размеры (В ×Ш), мм	$111,0 \times 17,6$		
Масса, кг, не более	0,15		
Диапазон рабочих температур,°С	-40+60		

1.4.9 Модуль расширения MCU-9-10HDO

• 10 каналов дискретного вывода типа NO контакт твердотельного реле с нагрузочной способностью до 500 мA (до 250 В переменного тока и до 350 В постоянного тока). Внешний вид и схема подключения приведены на рис. 1.28 и рис. 1.29. Технические характеристики приведены в таблице 1.12.

→ 17,6 ⊢

Рисунок 1.28 – Внешний вид модуля расширения MCU-9-10HDO

Рисунок 1.29 – Схема подключения модуля расширения MCU-9-10HDO

Таблица 1.12 – Основные параметры и технические характеристики модуля расширения типа 9

Наименование характеристики	Значение характеристики		
Каналы дискретного вывода типа NO контакт твердотельного реле			
Количество,шт.	10		
Нагрузочная способность канала/группы, А	0,5/2,5		
Максимальное коммутируемое напряжение переменного/	250/350		
постоянного тока, В			
Задержка срабатывания, мс, не более	5		
Гальваническая изоляция (электрическая прочность)			
Тип	2 группы по 5 каналов		
Между группами, В	2500 AC		
Каналы вывода - системная шина, В	2500 AC		
Прочие параметры			
Степень защиты корпуса	IP20		
Габаритные размеры (В ×Ш), мм	$111,0 \times 17,6$		
Масса, кг, не более	0,15		
Диапазон рабочих температур,°С	-40+60		

1.4.10 Модуль расширения МСU-ЕМ

• Модуль-измеритель электрической энергии.

Внешний вид и схема подключения приведены на рисунке 1.30.

Технические характеристики приведены в таблице 1.13.

Рисунок 1.30 – Внешний вид и схема подключения модуля расширения ЕМ

Таблица 1.13 – Основные параметры и технические характеристики модулей расширения типов L и H

Наименование характеристики	Значение характеристики	
Номинальное фазное (линейное) напряжение, В	230 (400)	
Номинальная частота напряжения переменного тока	50/60 (от 45 до 65)	
(допустимый диапазон), Гц		
Каналы аналогового ввода сигналов нап	ряжения переменного тока	
Количество каналов, шт.	3	
Номинальное значение фазного (линейного) напря-	57,7/100; 230/400	
жения Uном, В		
Максимальное значение фазного (линейного) напря-	264/457; 300/520	
жения Uмакс, В		
Диапазон измерений фазного (линейного) напряже-	$0,05 \cdot U_{HOM} \le U \le U_{MAKC}$	
ния переменного тока, В		
Пределы допускаемой приведенной к диапазону из-	±0,2	
мерений основной погрешности измерений фазного		
(линейного) напряжения переменного тока, $\%$		
Пределы допускаемой приведенной к диапазону из-	$\pm 0,1$	
мерений дополнительной погрешности измерений		
фазного (линейного) напряжения переменного тока		
от изменения температуры окружающей среды в диа-		
пазоне рабочих температур на каждые 10 °C, $\%$		
Диапазон измерений частоты переменного тока, Гц	4565	
Пределы допускаемой абсолютной погрешности из-	$\pm 0,01$	
мерений частоты переменного тока в диапазоне ра-		
бочих температур, Гц		
Каналы аналогового ввода сигналов силы переменного тока		
Количество каналов, шт.	3	
Тип подключения	трансформаторный	
Номинальный (максимальный) ток		
- исполнение L, мА	$65 \ (100)^1; \ 250 \ (400)$	
- исполнение Н, А	1 (6) или 5 (6)	
Диапазон измерений силы переменного тока, А	0І _{макс}	
Пределы допускаемой приведенной к диапазону из-	$\pm 0,2$	
мерений основной погрешности измерений силы пе-		
ременного тока, %		
Пределы допускаемой приведенной к диапазону из-	$\pm 0,1$	
мерений дополнительной погрешности измерений си-		
лы переменного тока от изменения температуры		
окружающей среды в диапазоне рабочих температур		
на каждые 10 °C, %		

Продолжение таблицы 1.13

Наименование характеристики	Значение характеристики		
Измерение электрической энергии			
Пределы допускаемой основной погрешности при из-			
мерении активной электрической энергии, активной			
электрической мощности соответствуют ² классу точ-			
ности:			
- для модулей расширения MCU-EM-L	1 по ГОСТ 31819.21-2012		
- для модулей расширения MCU-EM-H	0,2S по ГОСТ 31819.22-2012		
Средний температурный коэффициент при измере-			
нии активной электрической энергии, активной элек-			
трической мощности соответствует ² классу точности:			
- для модулей расширения MCU-EM-L	1 по ГОСТ 31819.21-2012		
- для модулей расширения MCU-EM-H	0,2S по ГОСТ 31819.22-2012		
Пределы допускаемой основной погрешности при	1 по ГОСТ 31819.23-2012		
измерении реактивной электрической энергии, ре-			
активной электрической мощности соответствуют ³			
классу точности			
Средний температурный коэффициент при измере-	1 по ГОСТ 31819.23-2012		
нии реактивной электрической энергии, реактивной			
электрической мощности соответствует ³ классу точ-			
ности			
Каналы аналогового ввода сигналов дифферен	нциального тока (тока утечки)		
Количество каналов, шт.	1		
Диапазон показаний силы дифференциального то-	0500 и 02000		
ка, мкА			
Стартовый ток			
Стартовый ток (чувствительность), мА, не более			
- исполнение L	0,35		
- исполнение Н	1 или 5		
Гальваническая изоляция (эл. прочность)			
Каналы аналогового ввода – системная шина, В	2500 AC		
Прочие параметры			
Степень защиты корпуса	IP20		
Габаритные размеры (В × Ш), мм, не более	111,0 ×17,6		
Масса, кг, не более	0,15		
Диапазон рабочих температур, °С	от -40 до +60		

 1 Поддиапазон не внесен в ОТ СИ, поверка СИ в нем не предусмотрена.

² Диапазон измерений, пределы допускаемой основной погрешности измерений активной электрической энергии, активной электрической мощности и средний температурный коэффициент соответствуют диапазонам измерений, пределам основной погрешности измерений активной энергии и среднему температурному коэффициенту для указанных классов точности по ГОСТ 31819.21-2012 и ГОСТ 31819.22-2012.

³ Диапазон измерений, пределы допускаемой основной погрешности измерений реактивной электрической энергии, реактивной электрической мощности и средний температурный коэффициент соответствуют диапазонам измерений, пределам основной погрешности измерений реактивной энергии и среднему температурному коэффициенту для указанных классов точности по ГОСТ 31819.23-2012.

1.4.11 Модуль расширения MCU-F

• Одноканальный модуль-регулятор со встроенным графическим LED-дисплеем. Внешний вид и схема подключения приведены на рисунках 1.31, 1.32. Технические характеристики приведены в таблице 1.14.

_____ 35,2 _____

Рисунок 1.31 – Внешний вид модуля расширения MCU-F

Рисунок 1.32 – Схема подключения модуля расширения MCU-F

Таблица 1.14 – Основные параметры и технические характеристики модуля расширения типа F

Наименование характеристики	Значение характеристики	
Каналы управления		
Колическтво, шт.	2	
Тип	Переключающиеся контакты реле	
Нагрузочная способность на переменном токе, А	012	
Коммутируемое напряжение переменного тока, В	0264	
Каналы аналогового ввода сигналов термопреобр	азователей сопротивления	
Количество, шт.	1	
Схема подключения датчиков	Трехпроводная	
Диапазоны измерений входных сигналов от термопр	еобразователей сопротивления	
по ГОСТ 6651-2009 в температурном .	эквиваленте, °С	
Типы поддерживаемых датчиков	Диапазон измерения температу-	
	ры, °С	
Pt 50 ($\alpha = 0,00385^{\circ}C^{-1}$)	-200+850	
Pt100 ($\alpha = 0,00385^{\circ}C^{-1}$)	-200+500	
Pt500 ($\alpha = 0,00385^{\circ}C^{-1}$)	-200+850	
Pt1000 ($\alpha = 0,00385^{\circ}C^{-1}$)	-200+850	
$50\Pi \ (\alpha = 0,00391^{\circ}C^{-1})$	-200+850	
$100\Pi \ (\alpha = 0,00391^{\circ}C^{-1})$	-200+500	
$500\Pi \ (\alpha = 0,00391^{\circ}C^{-1})$	-200+850	
$1000\Pi \ (\alpha = 0,00391^{\circ}C^{-1})$	-200+850	
50M ($\alpha = 0,00428^{\circ}C^{-1}$)	-180+200	
100M ($\alpha = 0,00428^{\circ}C^{-1}$)	-180+200	
500M ($\alpha = 0,00428^{\circ}C^{-1}$)	-180+200	
1000M ($\alpha = 0,00428^{\circ}C^{-1}$)	-180+200	
Cu50 ($\alpha = 0,00426^{\circ}C^{-1}$)	-50+200	
Cu100 ($\alpha = 0,00426^{\circ}C^{-1}$)	-50+200	
Cu500 ($\alpha = 0,00426^{\circ}C^{-1}$)	-50+200	
Cu1000 ($\alpha = 0,00426^{\circ}C^{-1}$)	-50+200	
Ni100 ($\alpha = 0,00617^{\circ}C^{-1}$)	-60+180	
Ni120 ($\alpha = 0,00617^{\circ}C^{-1}$)	-60+180	
Ni500 ($\alpha = 0,00617^{\circ}C^{-1}$)	-60+180	
Ni1000 ($\alpha = 0,00617^{\circ}C^{-1}$)	-60+180	
Пределы допускаемой приведенной к диапазону измере-	±0,25 для Pt50, Pt100, Pt500,	
ний основной погрешности измерений сигналов от тер-	Рt1000, 50П, 100П, 500П, 1000П;	
мопреобразователей сопротивления по ГОСТ 6651-2009 в	$\pm 0,5$ для остальных	
температурном эквиваленте, %		

Пределы допускаемой приведенной к диапазону измере-	$\pm 0,05$		
ний дополнительной погрешности измерений сигналов от			
термопреобразователей сопротивления по ГОСТ			
6651-2009 в температурном эквиваленте от изменения			
температуры окружающей среды в диапазоне рабочих			
температур на каждые 10 °C, $\%$			
Каналы аналогового ввода сигналов 0(4)20	мА постоянного тока		
Количество, шт.	1		
Диапазон измерений силы постоянного тока, мА	024		
Пределы допускаемой приведенной к диапазону измере-	$\pm 0,1$		
ний основной погрешности измерений силы постоянного			
тока, %			
Пределы допускаемой приведенной к диапазону измере-	± 0.05		
ний дополнительной погрешности измерений силы посто-			
янного тока от изменения температуры окружающей сре-			
ды в диапазоне рабочих температур на каждые 10°C, $\%$			
Каналы аналогового ввода сигналов 0100 мА переменного тока			
Количество, шт.	1		
Диапазоны измерений силы переменного тока частотой	0100		
(50± 0,4) Гц, мА			
Пределы допускаемой приведенной к диапазону измере-	±1,0		
ний основной погрешности измерений силы переменного			
тока частотой (50,0 \pm 0,4) Гц, %			
Пределы допускаемой приведенной к диапазону измере-	$\pm 0,2$		
ний дополнительной погрешности измерений силы пере-			
менного тока частотой (50,0±0,4) Гц от изменения тем-			
пературы окружающей среды в диапазоне рабочих тем-			
ператур на каждые 10°С, %			
Каналы аналогового ввода сигналов дифференциал	льного тока (тока утечки)		
Количество, шт.	1		
Диапазон измерения силы дифференциального тока (то-	0100		
ка утечки) частотой (50 \pm 0,4) Г ц, мк А			
Пределы допускаемой приведенной к диапазону измере-	±2,0		
ний основной погрешности измерений силы дифференци-			
ального тока (тока утечки) частотой (50,0 \pm 0,4) Гц, %			
Пределы допускаемой приведенной к диапазону измере-	$\pm 0,25$		
ний дополнительной погрешности измерений силы диф-			
ференциального тока (тока утечки) частотой (50,0±0,4)			
Гц от изменения температуры окружающей среды в диа-			
пазоне рабочих температур на каждые 10° C, %			
Каналы дискретного ввода сигналов 230 В переменного тока			
Количество, шт.	4		
Уровень сигнала «лог. 1» переменного тока, В	90264		

Уровень сигнала «лог. 0» переменного тока, В	040		
Гальваническая изоляция (электрическая прочность)			
Каналы аналогового ввода – системная шина, В	500 DC		
Каналы дискретного ввода и вывода – системная шина, В	2500 AC		
Прочие параметры			
Разрешение графического монохромного LED-дисплея	128 ×64 точки		
Степень защиты корпуса	IP20		
Габаритные размеры (В ×Ш), мм	$111,0 \times 35,2$		
Масса, кг, не более	0,3		
Диапазон рабочих температур, °С	-40+60		

1.4.12 Модуль расширения MCU-S-4R

• Модуль последовательных интерфейсов 4xRS-485.

Внешний вид и схема подключения приведены на рисунках 1.33, Технические характеристики приведены в таблице 1.15.

─ 17,6 ⊢

Рисунок 1.33 – Внешний вид модуля расширения $\mathrm{MCU}\mbox{-}\mathrm{S}\mbox{-}\mathrm{4R}$

Рисунок 1.34 – Схема подключения модуля расширения MCU-S-4R

Таблица 1.15 – Основные параметры и технические характеристики модуля расширения типа S

Наименование характеристики	Значение характеристики	
Модуль расширения последовательных интерфейсов		
Тип	RS-485	
Количество, шт	4	
Скорость обмена, кбит/с	9,6115,2	
Гальваническая изоляция (эл. прочность)		
Тип	индивидуальная	
Канал RS-485 – системная шина, В	500 DC	
Прочие параметры		
Степень защиты корпуса	IP20	
Габаритные размеры (В \times Ш), мм, не более	$105,0 \times 17,6$	
Масса, кг, не более	0,15	
Диапазон рабочих температур, °С	-40+60	

1.4.13 Модуль расширения МСИ-0 - заглушка

• Не содержит каналов ввода/вывода, схема подключения отсутствует.

Внешний вид приведен на рисунке 1.35.

Рисунок 1.35 – Внешний вид модуля расширения МСU-0

1.5 Параметры надежности

Параметры надежности устройства в соответствии с ГОСТ 27.003:

- средняя наработка на отказ, часов, не менее: 120000;
- средний срок службы, лет, не менее: 16;
- среднее время восстановления на объекте эксплуатации силами и средствами дежурной смены, часов, не более: 0,5.

Отказом устройства считается прекращение выполнения одной из функций или нарушение метрологических характеристик вследствие внутренних поврежде- ний, либо вследствие сбоя программного обеспечения.

Примечание – Критерием предельного состояния является экономическая нецелесообразность дальнейшей эксплуатации устройства или его ремонта, если стоимость ремонта равна или превышает 50 % стоимости нового устройства.

1.6 Индикация

Процесс функционирования базовых модулей и модулей расширения и их текущее состояние отображается при помощи светодиодных индикаторов.

Возможные режимы работы индикаторов описаны в таблице 1.16.

Режим	Описание
Flickering	Периодическое мигание индикатора длительностью 50 мс и частотой 10 Гц.
Blinking	Периодическое мигание индикатора длительностью 200 мс и частотой 2,5 Гц.
Single flash	Одиночное периодическое мигание индикатора длительностью 200 мс и об-
	щим периодом в 1200 мс.
Double flash	Двойное периодическое мигание индикатора длительностью 200 мС с паузой
	в 200 мС и общим периодом в 1600 мс.
Triple flash	Тройное периодическое мигание индикатора длительностью 200 мс с паузой
	в 200 мс и общим периодом в 2000 мс.
Quadruple	Четверное периодическое мигание индикатора длительностью 200 мс с паузой
flash	в 200 мс и общим периодом в 2400 мс.
Short flash	Однократное короткое мигание индикатора длительностью 30 мс.
On	Постоянное свечение индикатора.
Off	Индикатор выключен.

Таблица 1.16 – Режимы индикации

1.6.1 Системный индикатор «S» (Status). Цвет синий.

Режим и состояние индикатора «S» описываются в таблице 1.17.

Режим	Состояние	Описание
On	Работа	Нормальная работа устройства.
Off	Устройство выключе-	Устройство выключено или полностью неработо-
	НО	способно.
Flickering	Загрузка/инициализацияУстройство инициализируется после подачи пита-	
		ния или рестарта ПО. Продолжительность режима
		индикации 2000 мс, если процесс загрузки требует
		больше времени, то по факту.
Single flash	Аппаратная ошибка	Отказ или некорректная работа каких-либо аппа-
		ратных компонентов устройства. Приоритет инди-
		кации 1 (высокий)
Blinking	Ошибка конфигура-	Установлена недопустимая комбинация парамет-
	ции	ров для исполнения всех или некоторых функций
		устройства. Приоритет индикации 2 (средний).

Таблица 1.17

1.6.2 Индикация состояния прикладного ПО «Р» (PR). Цвет синий.

Режим и состояние индикатора «Р» описываются в таблице 1.18.

Таблица 1.18

Режим	Состояние	Описание
On	ПО запущено	Прикладное ПО запущено и работает штатно
Off	ПО отсутствует	Прикладное ПО отсутствует
Single flash	ПО остановлено	Прикладное ПО штатно находится в режиме
		«Стоп»
Flickering	Ошибка ПО	Ошибка прикладного ПО

1.6.3 Индикатор коммуникационного порта «Rx/Run» (Modbus RTU/CANopen). Цвет зеленый.

Режим и состояние индикатора «
 $R \ast$ в зависимости от работающего порта описываются в таблицах 1.19
и% 1.20.

Режим	Состояние	Описание
Short flash	Прием байта	Выполняется прием байта. Если прием байтов про-
		исходит чаще чем длительность Short flash – непре-
		рывное свечение до приема последнего байта.
Off	Нет приема	Нет приема данных.

Таблица 1.19 – Индикация при работе порта RS-485

Таблица 1.20 – Индикация при работе порта CAN

Режим	Состояние	Описание
Blinking	PREOPERATIONAL	Машина состояний данного порта в
		«PREOPERATIONAL».
Single flash	STOPPED	Машина состояний данного порта в «STOPPED».
On	OPERATIONAL	Машина состояний данного порта в
		«OPERATIONAL».
Off	BUS OFF	Машина состояний данного порта в «BUS OFF».

1.6.4 Индикатор коммуникационного порта «Т». Цвет желтый.

Режим и состояние индикатора «Т» в зависимости от работающего порта описываются в таблицах 1.21 и 1.22.

Таблица 1.21 – Индикация при работе порта RS-485

Режим	Состояние	Описание
Short flash	Передача байта	Выполняется передача байта. Если передача бай-
		тов происходит чаще чем длительность Short flash –
		непрерывное свечение до передачи последнего бай-
		та.
Off	Нет передачи	Нет передачи данных.

Режим	Состояние	Описание
Short flash	Передача фрейма	Выполняется передача САN-фрейма. Если пере-
		дача фреймов происходит чаще чем длительность
		Short flash – непрерывное свечение до передачи по-
		следнего фрейма.
Off	Нет передачи	Нет передачи данных.

Таблица 1.22 – Индикация при работе порта CAN

1.6.5 Индикатор входного дискретного сигнала «DI», «HDI». Цвет зе-

леный.

Режим и состояние индикатора «DI», «HDI» описывается в таблице 1.23.

Таблица 1.23

Режим	Состояние	Описание
On	Есть сигнал	Входной сигнал равен или выше порога срабатыва-
		ния.
Off	Нет сигнала	Входной сигнал равен или ниже порога отключе-
		ния.

1.6.6 Индикатор входного дискретного сигнала «AI», «СТІ». Цвет зеле-

ный.

Режим и состояние индикатора «AI» и «СТІ» описываются в таблице 1.24.

Таблица 1.24

Режим	Состояние	Описание
On	Есть сигнал	Входной сигнал находится в номинальном диапа-
		зоне.
Off	Нет сигнала	Входной сигнал ниже порога чувствительности.
Flickering	Перегрузка	Входной сигнал выше допустимого.

1.6.7 Индикатор входного аналогового сигнала термосопротивлений «RTD».

Цвет зеленый

Режим и состояние индикатора «RTD» описываются в таблице 1.25.

Таблица 1.25

Режим	Состояние	Описание
On	Датчик подключен	Датчик подключен.
Off	Датчик не подключен	Датчик не подключен или обрыв в цепях датчика.
Flickering	Короткое замыкание	Короткое замыкание в цепях датчика.

1.6.8 Индикатор выходного аналогового сигнала термосопротивлений «АО». Цвет желтый

Режим и состояние индикатора «АО» описываются в таблице 1.26.

Таблица 1.26

Режим	Состояние	Описание
On	Есть сигнал	Есть выходной сигнал.
Off	Нет сигнала	Нет выходного сигнала.
Flickering	Обрыв	Обрыв в цепи подключения потребителя сигнала
		или нет вспомогательного напряжения питания.

1.6.9 Индикатор выходного дискретного сигнала «DO», «HDO». Цвет желтый.

Режим и состояние индикатора «DO» и «HDO» описываются в таблице 1.27.

Таблица 1.27

Режим	Состояние	Описание
On	Включен	Выход включен.
Off	Выключен	Выход отключен.

1.7 ЭMC

1.7.1 ЭМС устройства согласно ГОСТ 30804.6.2-2013 соответствует следующим параметрам:

- а) Устойчивость к магнитному полю промышленной частоты. Степень жесткости испытаний 4 по ГОСТ IEC 61000-4-10-2014, критерий качества функционирования А;
- б) Устойчивость к радиочастотному электромагнитному полю по ГОСТ 30804.4.3-2013:
 - Степень жёсткости 3 в диапазоне 80 МГц 1 ГГц. Критерий качества функционирования А;
 - Степень жёсткости 2 в диапазоне 1,4 ГГц 2,0 ГГц. Критерий качества функционирования А;
 - Степень жёсткости 1 в диапазоне 2 ГГц 2,7 ГГц. Критерий качества функционирования А.
- в) Устойчивость к электростатическим разрядам. Степень жёсткости 3. Критерий качества функционирования В по ГОСТ 30804.4.2-2013;
- г) Устойчивость к кондуктивным помехам, наведённым радиочастотными электромагнитными полями. Степень жёсткости 3. Критерий качества функционирования А по ГОСТ 51317.4.6-99;
- д) Устойчивость к наносекундным импульсным помехам. Степень жёсткости 4. Критерий качества функционирования В по ГОСТ 30804.4.4-2013;
- e) Устойчивость к микросекундными импульсным помехам большой энергии. Класс условий эксплуатации 3. Критерий качества функционирования В по ГОСТ Р 51317.4.5-99;
- ж) Устойчивость к провалам, кратковременным прерываниям и изменениям напряжения электропитания по ГОСТ 30804.4.11-2013:
 - Провалы напряжения электропитания. Класс электромагнитной обстановки 3.
 Критерий качества функционирования А;
 - Прерывания напряжения электропитания. Класс электромагнитной обстановки
 3. Критерий качества функционирования С.

1.7.2 Создаваемые устройством электромагнитные помехи соответствует требованиям ГОСТ 30804.6.4-2013.

1.8 Сеть

1.8.1 При использовании в качестве интерфейса связи интерфейса RS-485 следует руководствоваться требованиями стандарта TIA/EIA 485-А.

1.8.2 При использовании в качестве интерфейса связи интерфейса CAN следует руководствоваться требованиями стандарта ISO-11898.

1.9 Упаковка

1.9.1 Упаковка устройства соответствует ГОСТ 23216 в соответствии с условиями транспортирования и хранения.

1.9.2 Внутренняя упаковка устройства соответствует категории ВУ-I по ГОСТ 23216 и обеспечивает защиту от прямого попадания атмосферных осадков, брызг воды и солнечной ультрафиолетовой радиации, ограничение попадания пыли, песка, аэрозолей.

1.9.3 Для изделий, поставляемых на суда, внутренняя упаковка устройств соответствует категории ВУ-ША по ГОСТ 23216 и обеспечивает защиту от проникания атмосферных осадков, аэрозолей, брызг воды, солнечной ультрафиолетовой радиации, пыли, песка, предотвращения развития плесневых грибов и ограничивает проникание к изделию газов и водяных паров.

1.9.4 Транспортная тара соответствует категории КУ-1 по ГОСТ 23216-78 и обеспечивает защиту от прямого попадания атмосферных осадков, брызг воды и солнечной ультрафиолетовой радиации, ограничение попадания пыли, песка, аэрозолей.

1.9.5 Конструкция транспортной тары должна исключать свободное перемещение устройств внутри.

1.9.6 Вид и размеры транспортной тары, а также массу грузового места определяет изготовитель.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Высоковольтные испытания и испытания на электрическую прочность

2.1.1 При использовании устройства в составе комплектного оборудования и проведении высоковольтных испытаний/испытаний прочности изоляции этого оборудования необходимо отключить все подводящие проводники к устройству.

2.1.2 При проведении высоковольтных испытаний/испытаний прочности изоляции устройства необходимо руководствоваться техническими характеристиками на каждый отдельный модуль.

2.2 Указания по эксплуатации

2.2.1 Эксплуатация устройства должна производиться в соответствии с настоящим руководством по эксплуатации.

2.2.2 Подключение и отключение устройства к измерительным цепям, а также к цифровым интерфейсам необходимо выполнять только после отключения цепей питания, приняв меры против случайного включения.

2.3 Эксплуатационные ограничения

2.3.1 Устройство не предназначено для работы в условиях взрывоопасной и агрессивной среды.

2.3.2 Тип атмосферы по содержанию коррозионно-активных агентов на открытом воздухе – промышленный (II) в соответствии с ГОСТ 15150-69.

2.3.3 Охлаждение устройства осуществляется за счет естественной конвекции. При работе устройства не должны подвергаться воздействию прямого нагрева источниками тепла до температуры более плюс 70 °C.

2.3.4 В помещении не должно быть резких колебаний температуры, вблизи места установки устройств не должно быть источников сильных электромагнитных полей.

2.3.5 При монтаже устройства должен обеспечиваться тепловой зазор между приборами по горизонтали не менее 5 миллиметров.

2.4 Подготовка к монтажу

2.4.1 Перед извлечением устройства выдержать его в упаковке при комнатной температуре не менее 1 часа.

2.4.2 После получения устройства со склада убедиться в целостности упаковки. Распаковать, извлечь устройства и паспорт (обеспечить сохранность паспорта).

2.4.3 Произвести внешний осмотр устройства, убедиться в отсутствии видимых механических повреждений.

2.4.4 Для устройств MCU-xX2R-x, MCU-xY2R-x и MCU-xXRC-x, MCU-xYRC-x при необходимости подключить смещающие резисторы, необходимо перевести оба движка в положение "ON". Для отключения в положение "OFF" (Рисунок 2.1). По умолчанию он находится в положении «OFF».

Рисунок 2.1 – Переключатели резисторов смещения

2.5 Общие указания по монтажу

2.5.1 Все работы по монтажу, эксплуатации и демонтажу производить с соблюдением действующих правил, обеспечивающих безопасное выполнение работ в электроустановках.

2.5.2 Монтаж/демонтаж устройства, отдельного модуля необходимо выполнять только после отключения цепей питания, приняв меры против случайного включения.

2.5.3 Крепление устройств осуществлять на монтажную рейку DIN 35 мм.

2.5.4 Подключение устройств к измерительным и сигнальным цепям производить проводами сечением не более 2,5 мм².

2.6 Монтаж/демонтаж устройства

2.6.1 Для демонтажа устройства необходимо вытянуть металлическое ушко фиксатора, расположенного в нижней части корпуса, и снять устройство как показано на рисунке 2.2.

Рисунок 2.2 – Демонтаж устройства с DIN-рейки

2.6.2 Монтаж устройства производится прижатием к рейке до щелчка фиксатора.

2.7 Монтаж/демонтаж модуля

2.7.1 Для демонтажа модуля необходимо:

• Отсоединить все разъемы от демонтируемого модуля согласно рисунку 2.3.

Рисунок 2.3 – Снятие разъемов с модуля

• Надавить на защелки в верхней и нижней частях корпуса и извлечь модуль, как показано на рисунке 2.4.

Рисунок 2.4 – Демонтаж модуля

• Для монтажа необходимо вставить плату в пазы и задвинуть модуль до щелчка. Присоединить разъемы.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ

3.1 Общие указания

3.1.1 Эксплуатационный надзор за работой устройства должен производиться лицами, за которыми закреплено данное оборудование.

3.1.2 Устройство не должно вскрываться во время эксплуатации. Нарушение целостности гарантийной наклейки снимает с производителя гарантийные обязательства.

3.2 Меры безопасности

3.2.1 Работы по техническому обслуживанию должны выполняться квалифицированным персоналом.

3.2.2 Персонал, осуществляющий обслуживание устройств, должен руководствоваться настоящим РЭ, а также «Межотраслевыми правилами по охране труда (правила безопасности) при эксплуатации электроустановок».

3.3 Порядок технического обслуживания

3.3.1 Устройства не требуют в процессе эксплуатации при нормальных условиях дополнительного технического обслуживания. Однако, в соответствии с имеющимися регламентными документами, стандартами по эксплуатации устройств возможны периодические и внеплановые осмотры, проверки оборудования.

3.3.2 Профилактическое обслуживание.

Перечень работ, которые могут быть включены на усмотрение эксплуатирующей организации в перечень плановых работ:

- проверка наличия необходимого комплекта технической, программной и эксплуатационной документации;
- проверка на актуальность версий системного и прикладного ПО;
- копирование текущей конфигурации;
- сравнение текущей конфигурации устройства с имеющейся в архиве.

4 PEMOHT

Ремонт устройства осуществляется изготовителем или аккредитованными юридическими и физическими лицами, имеющими право на проведение ремонта устройства.

Если устройство неисправно, или повреждено, необходимо:

- демонтировать устройство;
- составить акт неисправности, указав признаки неисправности, контактные данные лица, диагностировавшего неисправность;
- надежно упаковать устройство, чтобы исключить вероятность его повреждения при транспортировке;
- отправить устройство вместе с актом неисправности и сопроводительным письмом, содержащим адрес и Ф.И.О. контактного лица.

Сервисный центр изготовителя располагается по адресу производственной площадки:

450005, г. Уфа, ул. 50-лет Октября, д. 15. к 1.

Тех. поддержка: +7 (812) 245-05-62 доп. 512

support@prom-tec.net

www.prom-tec.net

Получить консультацию и/или пройти обучение по использованию устройства можно в обучающем центре, расположеном по адресу производственной площадки.

5 ХРАНЕНИЕ

Устройство должно храниться в упаковке в складских помещениях потребителя (поставщика) согласно ГОСТ 15150-69 группа 4 с дополнением:

- температура окружающего воздуха от минус 50 до плюс 75°С.

6 ТРАНСПОРТИРОВАНИЕ

Условия транспортирования устройств в транспортной таре предприятия-изготовителя должно соответствовать группе С по ГОСТ 23216-78, ГОСТ 15150-69 группа 4 с дополнением:

– температура окружающего воздуха от минус 50 до плюс 75 °C.

7 УТИЛИЗАЦИЯ

Данное изделие не содержит веществ, представляющих опасность для жизни, здоровья людей и окружающей среды. По окончании срока эксплуатации потребитель осуществляет утилизацию изделия.

8 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие изделия требованиям настоящего руководства при соблюдении потребителем условий хранения, транспортирования, монтажа и эксплуатации, установленных руководством. Гарантийный срок эксплуатации - 24 (двадцать четыре) месяца со дня продажи. Приложения

Приложение А (Справочное) Программное обеспечение

Работы с ПО устройства проводится при помощи программы «KSE Firmware Upgrade». Данная программа позволяет устанавливать, создавать резервную копию и отменять установку ПО устройства.

Подготовка к работе

Для работы с программным обеспечением (далее ПО) настраиваемого устройства необходимо кабелем USB подключить модуль к ПК.

Перед началом работы необходимо скачать актуальное ПО на ПК с сайта разработчика по ссылке https://prom-tec.net/model/184 в разделе «Загрузки».

Перед первым запуском программы требуется установить необходимый драйвер. Для этого необходимо:

- Перевести устройство в режим обновления ПО. Для этого следует удерживать кнопку «RST» на устройстве до включения индикатора «S».
- Запустить ПО и выбрать пункт меню «Установить драйвер устройства» (рис. А.1). Либо запустить программу Zadig (файл Zadig.exe находится в рабочей папке программы KSE Firmware Upgrade).

Рисунок А.1 – Выбор пункта меню «Установить драйвер устройства»

– В открывшемся окне (рис. А.2):

- a) Выбрать устройство «STM Device in DFU Mode» или «STM32 BOOTLOADER» (отмечено цифрой 1),
- б) Выбрать драйвер «libusbK» (отмечено цифрой 2),
- в) Убедиться, что в поле «USB ID» (VID/PID) стоят значения «0483» и «DF11» (отмечено цифрой 3),
| 🗾 Zadig | | – 🗆 X |
|--------------------------------|--------------------|---|
| Device Options Help | | |
| STM32 BOOTLOADER | | ✓ ☐ Edit |
| Driver STTub30 (v3.0.4.0) | libusbK (v3.0.7.0) | More Information
WinUSB (libusb) |
| USB ID 0483 DF11
WCID ? X 3 | Replace Driver | libusb-win32
libusbK
WinUSB (Microsoft) |
| 5 devices found. | 4 | Zadig 2.2.689 |

Рисунок А.2 – Окно программы «Zadig»

- г) Нажать кнопку «**Replace Driver**» (отмечено цифрой 4).
- В появившемся окне установить флаг «Всегда доверять программному обеспечению...» и нажать «Установить» как на рисунке А.3.

🕞 Безопасность Windows	
Установить программное обеспечение для данного устройства?	
Имя: libusbK libusbK USB Devices Издатель: USB\VID_0483&PID_DF11 (libwdi autogenera	
Всегда доверять программному обеспечению "USB\VID_0483PID_DF11 (libwdi autogenera".	<u>У</u> становить Не устанавливать
Следует устанавливать программное обеспечение только тех издателей, которым можно обеспечение для устройств можно безопасно установить?	но доверять. <u>Как узнать, какое программное</u>

Рисунок А.3 – Окно «Безопасность Windows»

– По завершении установки появится сообщение как на рисунке А.4:

Рисунок А.4 – Окно с сообщением об установке драйвера

Работа в программе KSE Firmware Upgrade

Загрузка системного ПО в устройство

Для загрузки системного ПО на устройство необходимо:

- Запустить программу KSE Firmware Upgrade (файл KSEFirmwareUpgrade.exe находится в рабочей папке программы KSE Firmware Upgrade).
- Убедиться, что устройство находится в режиме обновления ПО (как на рис. А.5).

Рисунок А.5 – Окно программы «KSE Firmware Upgrade»

 Нажать на кнопку «Загрузить в устройство» или выбрать аналогичный пункт меню. Откроется окно выбора файла с ПО А.6. Выбрать файл ПО.

Рисунок А.6 – Окно выбора файла

 Откроется окно опций загрузки, в котором можно выбрать отдельный пункт меню: «Системное ПО», «Web-интерфейс», «Прикладное ПО», «Настройки устройства» А.7. Далее можно стереть, загрузить ПО по каждому выбранному пункту, либо загрузить все отмеченные пункты нажав кнопку «Загрузить отмеченное».

📮 Опции загрузки	×
🗌 Создать резервн	ую копию ПО
Системное ПО	
🗹 Web интерфейс	:
Прикладное ПО)
Настройки устр	ойства
Загрузить отм	еченное
Системное ПО	Стереть
Прикладное ПО	Стереть
История изменений	Показать

Рисунок А.7 – Окно «Опции загрузки»

При отмеченном пункте **«Создать резервную копию»**, перед загрузкой ПО начнется создание резервной копии (рис. А.8).

Рисунок А.8 – Создание резервной копии

Затем откроется окно с информацией о текущем и о записываемом на устройство ПО А.9. При нажатии кнопки «Да» начнется процесс записи ПО на устройство.

Рисунок А.9 – Окно с информацией о ПО

– По завершении загрузки в окне сообщений появится сообщение «Загрузка завершена» (рис. А.9). Откроется окно выбора опций загрузки того же файла для загрузки на другое устройство. Если в этом нет необходимости, окно можно закрыть.

Считывание системного ПО

Для считывания системного ПО из устройства необходимо выполнить следующие действия:

- а) Убедиться, что устройство находится в режиме обновления ПО,
- б) Нажать кнопку «Считать из устройства»,
- в) Начнется процесс создания резервной копии ПО из устройства,
- г) По завершении загрузки в окне сообщений появится сообщение «Загрузка завершена».

Загрузка резервной копии системного ПО

Перед запуском процесса записи ПО на устройство программа **KSE Firmware Upgrade** автоматически выгружает из устройства текущее ПО в каталог {путь к папке пользователя}/AppData/Roaming/k-soft/KSEFirmwareUpgrade/backup.

Файлам с выгруженным ПО автоматически присваивается имя в формате:

{[backup]_[Дата]_[Время выгрузки]}.zip.

Поэтому после записи ПО на устройство существует возможность вернуть ранее установленную версию ПО.

Для этого необходимо следовать указаниям пункта А «Запись ПО в устройство» и выбрать файл с выгруженным ПО в домашней папке устройства.

Слияние файлов настроек Modbus

При различии в файлах настроек Modbus-адресов на устройстве выйдет окно выбора действий (рис. А.10):

🗣 Выбор действия		×
Файлы настройки М	odbus адресов им	иеют отличия.
Перезаписать	Редактировать	Пропустить

Рисунок А.10 – Окно выбора действия

- а) Следует выбрать необходимое действие:
 - Кнопка «Перезаписать» для перезаписи файла на устройстве файлом из архива,
 - Кнопка «Пропустить» для сохранения файла на устройстве без изменений,
 - Кнопка «Редактировать» для запуска внешней программы сравнения файлов, указанной в «Параметрах слияния файлов» (по умолчанию программа «WinMerge»). При отсутствии программы по указанному адресу, выйдет окно ошибки (рис. А.11) и окно выбора действия (рис. А.12).

Рисунок А.11 – Окно ошибки запуска программы слияния файлов настроек Modbus–адресов

Выбор действия		×
Файл не отредактирован. Переза	эписать файл н	а устройстве?
	Да	Нет

Рисунок А.12 – Окно выбора действия

б) Отредактировать записываемый файл (поле 2) (рис. А.13), ориентируясь на содержание загружаемого файла (поле 1) и содержание файла настроек на устройстве (поле 3),

🙀 WinMerge - [moo	dbus_mappings.cfg x 3]		- 🗆 X				
👼 Файл Правка	Вид Объединение Инструменты Г	Ллагины Окно Помощь	_ & ×				
🔟 🖨 🗐 🔊 (🏻 😫 🛃 🖓 🛣 😤 🖉	z 🔶 🛸 🇞 🛹 🔀 📲	🕅 🔗				
amodbus_n 4 pings.cfg x 3							
Панель положения ×	C:\\resources\modbus_mappings.cfg	C:\mp\output\modbus_mappings.cfg	C:\emp\device\modbus_mappings.cfg				
	1001=0x2000[2]:7 1021=0x2001[1]:13 1101=0x2002[1]:3 1111=0x1001[0]:1 1121=0x1003[0]:25	1001=0x2000[2]:7 1021=0x2001[1]:13 1101=0x2002[1]:3 1111=0x1001[0]:1 1121=0x1003[0]:25	<pre>^ 1001=0x2000[2]:7 1021=0x2001[1]:13 1101=0x2002[1]:3 1111=0x1001[0]:1 1121=0x1003[0]:25</pre>				
	2401=0x2141[1]:5 2411=0x2143[1]:5 2421=0x2321[1]:7 2441=0x2323[1]:4						
	# B0 9001=0x3F01[11+1 # CTp: UTF-8 BOM Unix R0	# B0 9001=0x3F01[11.1 # F2 CTp: UTF-8BOM Unix	# B0 9001=0x3F01[11-1 # 13 CTp: UTF-8 BOM Unix R0				
	CTP: UTF-8 BOM Unix RO	Стр: UTF-8 BOM Unix Най,	Стр: UTF-8 BOM Unix RO дено всего одно отличи				

Рисунок А.13 – Окно программы «WinMerge»

- в) Далее необходимо сохранить файл (кнопка 4) (рис. А.13) и закрыть программу сравнения файлов «WinMerge»,
- г) Во всплывшем окне выбора действия нажать «Да» или «Нет» в зависимости от необходимости сохранения отредактированного файла в устройстве (рис. А.14).

Рисунок А.14 – Окно выбора действия

Настройка программы

Параметры загрузки

а) Выбрать пункт «Параметры» главного меню (рис. А.15)

Рисунок А.15 – Выбор пункт «Параметры»

- б) Установить необходимые параметры (рис. А.16):
 - IP адрес устройства,
 - Имя пользователя для подключения по FTP,
 - Пароль для подключения по FTP,
 - Время ожидания подключения по FTP, по истечении которого выйдет сообщение об ошибке,
 - Время ожидания подключения по TCP, по истечении которого выйдет сообщение об ошибке,
 - Для сброса параметров до значений по умолчанию нажать кнопку «По умолчанию»,
 - При необходимости установить флаг для создания резервной копии ПО (дублирует поле в меню загрузки).

🗣 Параметры загрузки	×
IP адрес устройства]
Имя пользователя 2 admin	
Пароль 3]
Время ожидания подключения по FTP, мс 4 10000 Время ожидания подключения по TCP, мс 5 10000]
6 По умолчанию	
Создавать резервную копию ПО 7 ОК Cancel	
Рисунок А.16 – Окно параметров загрузки	

Параметры слияния файлов настроек Modbus

а) Выбрать пункт «Параметры слияния файлов» главного меню (рис. А.17),

Рисунок А.17 – Окно параметров слияния файлов

- б) Указать командную строку для вызова программы слияния файлов в (пункт 2) или выбрать команду по умолчанию (пункт 1) (рис. А.18). Использовать ключи \$REMOTE, \$MERGE и \$LOCAL для указания путей к файлам:
 - \$REMOTE путь к файлу настроек Modbus из архива,
 - \$MERGE путь к результирующему файлу настроек Modbus, который запишется на устройство,
 - \$LOCAL путь к файлу настроек Modbus с устройства.

🗣 Настройки слияния		?	×
Команда по умолчанию 1.10/WinMerge/winmergeu.exe О Пользовательская команда	" /wl /wr "\$REMOTE" "\$MER(GE" "\$LO	CAL*
	ОК	Cance	el

Рисунок А.18 – Окно настройки слияния файлов

Приложение Б (Справочное) Настройка модулей расширения

МСU-1-10HDI и МСU-2-10DI

WEB-интерфейс данного модуля расширения содержит две вкладки (рис. Б.1).

Вкладка *Input* отображает состояние входов с флагами, которые указывают инвертировано ли это состояние. Параметр *Value* указывает на наличие уровня логической «1» на входе. *Invert Polarity* указывает на инверсию уровня логической «1».

Индикатор работает независимо от инверсии.

Вкладка Settings позволяет задать Invert polarity – возможность инвертирования состояния входа и Filter time – время фильтрации при изменении состояния входа, в мс (20-120 мс).

lule 1 MCU - 1 - 10HDI	 Module 1 	MCU - 1 - 10HDI	
Input Settings	Input	tings	
Value Invert Polarity	Invert Po	larity Filter Time, ms	
1 🖲 🔘	1 🛛	20 apply	
2 🔘 🔘	2 🗹	20 apply	
3 0 0	3 🗆	20 apply	
4 0 0	4	20 apply	
5 0 0	5 🗆	20 apply	
6 0 0	6 🗆	20 apply	
7 0 0	7 🗆	20 apply	
8 0 0	8 🗆	20 apply	
9 0 0	9 🗆	20 apply	
10 O O	10 🗆	20 apply	

Рисунок Б.1 – Внешний вид и схема подключения модуля расширения 1-10HDI

MCU-3-8AI

На вкладке Input (рис. Б.2) отображаются состояния входов.

Параметр Value указывает на значение входного аналогового сигнала, мА.

Status – статус входа, Scaled – задано ли масштабирование входа во вкладке Scaling. Во вкладке Deadband параметр Deadband Reference определяет диапазон значений входного сигнала, от которого берется Deadband, % (является константой).

Вкладка *Settings* – параметр *Filter Time* задает время фильтрации для каждого входа, в мс (0-240 мс), Input Range позволяет выбрать диапазон входного тока.

Вкладка *Scaling* позволяет задать значения масштабирования входного сигнала (Scaling) и смещения для каждого входа (Offset):

Vмасштабированное=(Vполученное – Offset) \times Scaling.

odule 5 MCU - 3	3 - 8AI			~ Module	9.5 MC	JU - 3 - 8AI			
Input Deadband	Settings	Scaling		In	out Deadbar	nd Settings	Scaling		
Value Status					Deadband Refe	rence Deadban	i, %		
1 0.00000 Normal				1	192.00000	0.50000		apply	
2 -28.00000 Normal				2	96.00000	0.50000		apply	
3 0.00000 Normal				3	504.00000	0.50000		apply	
4 120.00000 Normal				4	24.00000	0.50000		apply	
5 0.00000 Normal				5	24.00000	0.50000		apply	
6 0.00000 Normal				6	24.00000	0.50000		apply	
7 0.00000 Normal				7	24.00000	0.50000		apply	
8 0.00000 Normal	- 8AI			8 - Module	24.00000 9.5 MC	0.50000 CU - 3 - 8AI		apply	
8 0.0000 Normal ule 5 MCU - 3 Input Deadband	- 8AI Settings	Scaling		- Module	24.00000 e 5 MC	0.50000	Scaling	apply	
8 0.0000 Normal ule 5 MCU - 3 Input Deadband [Input Range	- 8AI Settings	Scaling Filter Time, ms		- Module	24.00000 s 5 MC but Deadbar Scaling	0.50000	Scaling	apply	
8 0.0000 Normal ule 5 MCU - 3 input Deadband Input Range 1 1 0 - 20	- 8AI Settings	Scaling Filter Time, ms	apply	8 • Module In	24.00000 5 Mo Deadbar Scaling 8.00000	0.50000 CU - 3 - 8AI nd Settings	Scaling Offset 0.00000	apply	apply
8 0.0000 Normal ule 5 MCU - 3 Input Deadband Input Range 1 1 0 - 20 2 0 - 20	- 8AI Settings	Scaling Filter Time, ms 0 0	apply apply	- Module In 1 2	24.00000 5 MC Deadbar Scaling 8.00000 4.00000	0.50000 CU - 3 - 8AI ad Settings apply apply	Scaling Offset 0.00000 7.00000		apply apply
8 0.0000 Normal Input Deadband Input Input Range 1 0 - 20 2 2 0 - 20 3 0 - 20	- 8AI Settings • apply • apply • apply	Scaling Filter Time, ms 0 0 0	apply apply apply	8 • Modula In 1 2 3	24.00000 5 MC Deadbar Scaling 8.00000 4.00000 21.00000	0.50000 CU - 3 - 8AI nd Settings apply apply apply	Scaling Offset 0.00000 7.00000 0.00000		apply apply apply
8 0.0000 Normal tule 5 MCU - 3 Input Deadband [1 0 - 20 2 2 0 - 20 3 3 0 - 20 2 4 0 - 20 2	- 8Al Settings apply apply apply apply apply	Scaling Filter Time, ms 0 0 0 0	apply apply apply apply	 Module In 1 2 3 4 	24.00000 5 Mc Deadbar Scaling 8.00000 4.00000 21.00000	0.50000 CU - 3 - 8AI ad Settings apply apply apply apply	Scaling Offset 0.00000 7.00000 0.00000 -120.00000		apply apply apply apply apply
8 0.0000 Normal tule 5 MCU - 3 Input Deadband Input Range 1 1 0 - 20 2 0 - 20 3 0 - 20 4 0 - 20 5	- 8AI Settings v apply v apply v apply v apply v apply v apply	Scaling Filter Time, ms 0 0 0 0 0	apply apply apply apply apply	* Module In 1 2 3 4 5	24.00000 5 MC Scaling 8.00000 4.00000 1.00000 1.00000	0.50000 CU - 3 - 8Al apply apply apply apply apply	Scaling Offset 0.00000 7.00000 0.00000 -120.00000 0.00000	apply	apply apply apply apply apply
8 0.0000 Normal Iule 5 MCU - 3 Input Deadband [Input Range 1 0 - 20 2 2 0 - 20 2 0 - 20 2 3 0 - 20 2 2 0 - 20 2 2 0 - 20 2	- 8Al Settings v apply v apply v apply v apply v apply v apply v apply	Scaling Filter Time, ms 0 0 0 0 0 0 0 0 0	apply apply apply apply apply apply	8 • Module 1 2 3 4 5 6	24.00000 25 MC Deadbar Scaling 8.00000 21.00000 1.00000 1.00000	0.50000 CU - 3 - 8AI apply apply apply apply apply apply apply	Scaling Offset 0.00000 7.00000 0.00000 -120.00000 0.00000 0.00000	apply	apply apply apply apply apply apply
8 0.0000 Normal Input Deadband Input Input Range 1 0 - 20 2 1 0 - 20 2 0 - 20 3 0 - 20 2 0 - 20 5	- 8AI Settings 2 apply 2 apply 2 apply 2 apply 2 apply 2 apply 2 apply 2 apply 2 apply 2 apply	Scaling Filter Time, ms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	apply apply apply apply apply apply apply apply	8 • Module 1 2 3 4 5 6 7	24.00000 5 MC Scaling 8.00000 4.00000 1.00000 1.00000 1.00000	0.50000 CU - 3 - 8AI Ad Settings apply apply apply apply apply apply apply	Scaling Offset 0.00000 7.00000 0.00000 -120.00000 0.00000 0.00000 0.00000 0.00000	apply	apply apply apply apply apply apply apply

Рисунок Б.2

MCU-4-8CTI

На вкладке Input (рис. Б.3) отображаются состояния входов.

Параметр *Value* указывает на значение входного аналогового сигнала, мА, *Range* – диапазон измерений тока.

Во вкладке *Deadband* параметр *Deadband Reference* определяет диапазон значений входного сигнала, от которого берется *Deadband*, % (является константой);

Вкладка *Settings* – параметр *Filter Time* задает время фильтрации для каждого входа, в мс (0-240 мс);

Вкладка *Scaling* позволяет задать значения масштабирования входного сигнала (*Scaling*) и смещения для каждого входа (*Offset*):

Vмасштабированное=(Vполученное-Offset) \times Scaling.

- Mo	odule 1	MCU -	4 - 8CTI		
	Input D	eadband	Settings	Scaling	
	Value	Status			
	1 92.00000	Normal			
	2 0.00000	Normal			
	3 0.00019	Normal			
	4 0.00000	Normal			
	5 0.00002	Normal			
	6 0.00000	Normal			
	7 0.00000	Normal			
	8 0.00000	Normal			

 Module 1 	MCU - 4	- 8CTI	
Input	Deadband	Settings Scaling	
Dead	band Reference	Deadband, %	
1 1495	.00000	3.00000	apply
2 975.0	00000	0.50000	apply
3 520.0	00000	0.50000	apply
4 65.00	0000	0.50000	apply
5 65.00	0000	0.50000	apply
6 65.00	0000	0.50000	apply
7 65.00	0000	0.50000	apply
8 65.00	0000	0.50000	apply

 Module 1 	MCU - 4	- 8CTI	
Input	Deadband	Settings	Scaling
Filte	er Time, ms		
1 15		apply	
2 0		apply	
3 0		apply	
4 2		apply	
5 0		apply	
6 7		apply	
7 0		apply	
8 0		apply	

Input Deadband	Settings	Scaling	
Scaling		Offset	
1 23.00000	apply	-4.00000	apply
2 15.00000	apply	0.00000	apply
3 8.00000	apply	0.00000	apply
4 1.00000	apply	0.00000	apply
5 1.00000	apply	0.00000	apply
6 1.00000	apply	0.00000	apply
7 1.00000	apply	0.00000	apply
8 1.00000	apply	0.00000	apply

Рисунок Б.3

На вкладке *Input* (рис. Б.4) отображаются состояния входов. Параметр *Value* указывает на значение входного аналогового сигнала, мА.

Status – статус входа, Scaled – задано ли масштабирование входа во вкладке Scaling. Во вкладке Deadband параметр Deadband Reference определяет диапазон значений входного сигнала, от которого берется Deadband, % (является константой).

Вкладка Settings – параметр Filter Time задает время фильтрации для каждого входа, в мс (0-240 мс), параметр Sensor Type задает тип датчика на каждом из входов (типы датчиков и их характеристики указаны в п. 1.8).

Вкладка *Scaling* позволяет задать значения масштабирования входного сигнала (*Scaling*) и смещения для каждого входа (*Offset*):

Vмасштабированное=(Vполученное-Offset)×Scaling.

MCU - 5 - 4RTD (10kΩ)	- Module 4 MCU - 5 - 4RTD (10kΩ)
Input Deadband Settings Scaling	Input Deadband Settings Scaling
Sensor Type Filter Time, ms	Scaling Offset
1 RTD Cu 100 v apply 0 apply	1 1.00000 apply 0.00000 apply
2 TC S v apply 0 apply	2 15 apply 0.00000 apply
3 TC A-1 v apply 0 apply	3 1.00000 apply 0.00000 apply
4 R 0-0,4 kOhm v apply 0 apply	4 6 apply 0.00000 apply
	Module 4 MCU - 5 - 4RTD (400Ω)
Module 4 MCU - 5 - 4RTD	
Input Deadband Settings Scaling	Input Deadband Settings Scaling
Value Status	Deadband Reference Deadband, %
1 nan 1	1 0.00000 12 apply
2 nan 1	2 0.00000 0.5 apply
3 nan 1	3 0.00000 4 apply
4 nan 1	4 0.00000 0.50000 apply

Рисунок Б.4

MCU-6-8VI

Графический интерфейс модуля расширения имеет четыре вкладки (рис. Б.5).

Вкладка *Input*, параметр *Value* отображает значения на соответствующих входах (возможные значения 0..10 В), *Scaled* - задано ли масштабирование входа во вкладке *Scaling*.

Вкладка *Deadband reference* – диапазон значений входного сигнала, от которого берется *Deadband*, % (является константой).

Вкладка *Settings* – в Filter Time задается время фильтрации для каждого входа, в мс (0-240 мс).

Вкладка *Scaling* – вкладка позволяет задать значения масштабирования входного сигнала (*Scaling*) и смещения для каждого входа (*Offset*):

Vмасштабированное=(Vполученное-Offset)×Scaling.

le 2 MCU - 6 - 8V	/1	- Module 2	MCU - 6 - 8\	/I	
put Deadband Se	ttings Scaling	Input	Deadband Se	ettings Scaling	
/alue		De	adband Reference De	adband, %	
6.01302		1 13	0.00000	50000	ap
00400		2 10	00000	50000	ap
00400		3 10	00000	50000	ap
)0400		4 10	00000	50000	ap
0700		5 10	00000	50000	ap
0100		6 10	00000	50000	ap
		7 10	00000	50000	ap
00400					
0.00400 0.00700 2 MCU - 6 - 8V	1	8 10	00000 0.9 MCU - 6 - 8VI	50000	a
00400 00700 MCU - 6 - 8V Deadband Set	11 ttings Scaling	 Module 2 	MCU - 6 - 8VI	50000 Scaling	ar
MCU - 6 - 8V Deadband Set	/I ttings Scaling	 Module 2 Input Scali 	00000 0.4	50000 Scaling	
0400 0700 MCU - 6 - 8V Deadband Set er Time, ms	/I ttings Scaling apply	 Module 2 Input Scali 1 [13.0] 	00000 0. MCU - 6 - 8VI Deadband Settings ng 0000 apply	50000 Scaling Offset 2.0000	ar
0400 0700 MCU - 6 - 8V Deadband Set er Time, ms	/I ttings Scaling apply apply	8 10 • Module 2 Input 1 13.0 2 1.00	00000 0.: MCU - 6 - 8VI Deadband Settings ng 0000 apply 000 apply	50000 50000 50000 50000 50000 50000 50000 50000 50000 50000	
400 700 MCU - 6 - 8V Deadband Set r Time, ms	ttings Scaling apply apply	 ■ Module 2 ■ Module 2 ■ Input ■ Scali 1 13.0 2 1.00 3 1.00 	00000 0.3 MCU - 6 - 8VI Deadband Settings ng 2000 apply 2000 apply 2000 apply	Scaling Offset 2.00000 3.00000	
400 700 Deadband Set r Time, ms	/I ttings Scaling apply apply apply apply	 Module 2 Input Scali 1 13.0 2 1.00 3 1.00 4 1.00 	000000 0.3 MCU - 6 - 8VI Deadband Deadband Settings 00000 apply 0000 apply 0000 apply 0000 apply	Scaling Offset 2.00000 3.00000 0.00000 5.00000	
1400 1700 MCU - 6 - 8V Deadband Set r Time, ms 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	/l ttings Scaling apply apply apply apply apply	 Module 2 Input Scali 1 (13.0) 2 (1.00) 3 (1.00) 4 (1.00) 5 (1.00) 	000000 0.3 MCU - 6 - 8VI Deadband Deadband Settings 19 3 00000 apply 0000 apply 0000 apply 0000 apply 000 apply 000 apply	50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000	
1400 1700 MCU - 6 - 8V Deadband Set 1 1 2 2 2 4 2 4 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	/I ttings Scaling apply apply	 Module 2 Module 2 Input Scali 1 13.0 2 1.00 3 1.00 4 1.00 5 1.00 6 1.00 	000000 0.3 MCU - 6 - 8VI Deadband Deadband Settings ng 2000 2000 apply	Scaling Offset 2.00000 3.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
0400 0700 MCU - 6 - 8V Deadband Set ar Time, ms a a a a a a a a a a a a a a a a a a a	/l ttings Scaling apply apply apply apply apply apply apply	 Module 2 Input Scali 1 13.0 2 1.00 3 1.00 4 1.00 5 1.00 6 1.00 7 1.00 	000000 0.3 MCU - 6 - 8VI Deadband Deadband Settings ng 3 0000 apply 000 apply	Scaling Offset 2.0000 3.00000 5.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	

Рисунок Б.5

MCU-7-4AO

Графический интерфейс модуля представлен тремя вкладками (рис. Б.6).

На вкладке *Output* задаются значения тока на выходах, (0(4)...20 мA), *Scaled* - задано ли масштабирование выхода во вкладке *Scaling*.

Вкладка *Error Mode* задает режим безопасности – позволяет включить или выключить безопасный режим и установить безопасное значение^{*}.

Scaling – вкладка позволяет задать значения масштабирования выходного сигнала (Scaling) и смещения для каждого выхода (Offset).

В режиме «Воспроизведения напряжения» для получения фактического значения выходного напряжения в В коэффициент *Scaling* задается 0,5.

Vмасштабированное=Vполученное/Scaling-Offset.

Для сохранения каждого изменённого значения необходимо нажать кнопку "apply". *- в системном ПО не обрабатывается, реализация в прикладном ПО.

Module	4 MCU - 7 - 4	AO
Out	put Error Mode	Scaling
	Value	
1 [0.00000	apply
2 [0.0000	apply
3 [0.0000	apply
4 [0.00000	apply

Daule 4 MCU - 7 - 4AU	Module 4 MCU - 7 - 4AO	
Output Error Mode Scaling	Output Error Mode Scaling	
Error Value Error Mode	Scaling Offset	
1 0.00000 apply On ~ apply	1 5.00000 apply 0.00000 apply	
2 0.00000 apply On ~ apply	2 1.00000 apply 2 apply	Ĩ
3 0.00000 apply On ~ apply	3 1.00000 apply 0.00000 apply	ĺ
4 0.00000 apply On v apply	4 1.00000 apply 0.00000 apply	

Рисунок Б.6

MCU-8-4RO

На вкладке *Output* (рис. Б.7) в параметре *Invert Polarity* флагами отображаются выходы, которые были заданы инверсными во вкладке *Settings*.

В пункте Value включаются соответствующие выходы.

Error mode – режим безопасности. Позволяет включить или выключить безопасный режим (Error Mode) и установить безопасное значение (Error Value)*.

Filter Mask – возможно подключить на каждый выход маскирование управления^{*}. Для сохранения каждого изменённого значения необходимо нажать кнопку "apply". * - в системном ПО не обрабатывается, реализация в прикладном ПО.

Module 6	MCU - 8 - 4RO	✓ Module 6	MCU - 8 - 4RO
Output	Settings Error Mode Filter M	Mask Output	Settings Error Mode Filter Mask
Value	e Invert Polarity	Inve	ort Polarity
1 🗹	0	1 🗆	
2 🗆	0	2 🗆	
3 🗆	0	3 🗆	
4 🗹	0	4 🗆	
✓ Module 6	MCU - 8 - 4RO	✓ Module 6	MCU - 8 - 4RO
Module 6 Output	MCU - 8 - 4RO Settings Error Mode Filter M	Module 6 Output	MCU - 8 - 4RO Settings Error Mode Filter Mask
Module 6 Output Error	MCU - 8 - 4RO Settings Error Mode Filter M Value Error Mode	Aask Output	MCU - 8 - 4RO Settings Error Mode Filter Mask er Mask
Module 6 Output Error 1	MCU - 8 - 4RO Settings Error Mode Filter M Value Error Mode	Aask Output	MCU - 8 - 4RO Settings Error Mode Filter Mask er Mask
Module 6 Output Error 1 2	MCU - 8 - 4RO Settings Error Mode Filter M Value Error Mode	Mask Mask Output Fitte 1 2	MCU - 8 - 4RO Settings Error Mode Filter Mask
Module 6 Output Error 1 2 3	MCU - 8 - 4RO Settings Error Mode Filter M Value Error Mode	Mask Mask Output Fitte 1 2 3	MCU - 8 - 4RO Settings Error Mode Filter Mask
Module 6 Output Error 1 2 3 3 4 Z	MCU - 8 - 4RO Settings Error Mode Filter M Value Error Mode	Aask Output	MCU - 8 - 4RO Settings Error Mode Filter Mask

Рисунок Б.7

MCU-9-10HDO

На рисунке Б.8 представлен графический интерфейс модуля расширения.

На вкладке *Output в Invert Polarity* отображаются выходы, которые были заданы инверсными во вкладке *Settings*.

В пункте Value включаются соответствующие выходы.

Error Mode – режим безопасности. Позволяет включить или выключить безопасный режим и установить безопасное значение^{*}.

Filter Mask – возможность подключить на каждый выход маскирование управления*.

Для сохранения каждого изменённого значения необходимо нажать кнопку "apply". * - в системном ПО не обрабатывается, реализация в прикладном ПО.

- Module 2 MCU - 9 - 10HDO	- Module 2 MCU - 9 - 10HDO
Output Settings Error Mode Filter Mask	Output Settings Error Mode Filter Mask
Value Invert Polarity	Invert Polarity
1 🖸 🔘	1 🗹
2 🗹 🔘	2 🗆
3 🗹 🔾	3 🗆
4 🗆 💿	4 🖬
5 🗹 🔘	5 🗹
6 🗆 O	6 🗆
7 🗆 O	7
8 🗆 O	8
9 🗆 🔿	9
10 🗆 🔿	10 🗆
- Module 2 MCU - 9 - 10HDO	Module 2 MCU - 9 - 10HDO
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask	Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Error Value Error Mode	Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Filter Mask
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Error Value Error Mode 1	Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Filter Mask 1
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Error Value Error Mode 1 2	Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask 1 2
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Error Value Error Mode 1 2	Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask 1 2 3 .
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Error Value Error Value T C	 Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Filter Mask 1 2 3 4
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Error Value Error Value Error Value C	Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask I
 Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Error Value Error Mode 1 2 . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Filter Mask 1 2 3 4 2 6
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Error Value Error Mode 1 C 2 C 3 C 4 C 5 C 6 C 7 C	Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Filter Mask 1 . 2 . 3 . 4 2 . 5 . 6 . 7 .
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask I Image: Constrained on the setting of the set in the setting of the set in the set i	 Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Filter Mask 1 2 3 4 2 3 4 4 7 8
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Error Value Error Mode 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C	• Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask I I I 2 I I 3 I I 4 I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Filter Mask Error Value Error Mode 1 C C 2 C C 3 C C 4 C C 5 C C 6 C C 7 C C 8 C C 9 C C 10 C C	Module 2 MCU - 9 - 10HDO Output Settings Error Mode Filter Mask Filter Mask 1 2 3 3 4 2 3 3 4 4 4 5 5 1 6 1 7 1 8 1 9 1 10 1

Рисунок Б.8

MCU-EM

В графическом интерфейсе модуля отражены вкладки с текущими параметрами и настройками устройства:

- a) Current, Voltage, PF токи, напряжения, коэффициенты мощности;
- б) Power мощности;
- в) Energy энергии;
- г) Quality показатели качества;
- д) Misc разное;
- e) Deadband зоны нечувствительности;
- ж) Settings настройки.
- а) Токи, напряжения, коэффициенты мощности (рис. Б.9):
 - Отображаются действующие значения токов: I_A, I_B, I_C, A действующее значение фазного тока (фазы A, B, C), I_{avg}, A среднее действующее значение фазного тока, I_d, A дифференциальный ток;
 - 2) Действующие значения напряжений:
 - U_A, U_B, U_C, B фазное значение напряжения (фазы A, B, C),
 - U_{avg} , В среднее действующее значение фазного напряжения, UL_{avg} , В;

```
– U, В – линейное значение напряжения (фазы U_{AB}, U_{BC}, U_{CA}), - среднее дей-
ствующее значение линейного напряжения AVG;
```

- 3) Коэффициент мощности:
 - PF $\cos \varphi$ коэффициент мощности пофазно (фазы A, B, C),
 - *PF_{avg}* усредненное значение коэффициента мощности.

dule 1	L - EM				
Current, V	oltage, PF	Power Energy	Quality Mis	sc Deadband	Settings
Current					
la, A	0.00000				
lb, A	0.00000				
Ic, A	0.00000				
lavg, A	0.00000				
ld, mA	0.00000				
Line-to-Ne	eutral Voltage	Line-to-Line Voltage			
Ua, V	0.00000	Uab, V	0.00000		
Ub, V	0.00000	Ubc, V	0.00000		
Uc, V	0.00000	Uca, V	0.00000		
Uavg, V	0.00000	ULavg, V	0.00000		
Power Fa	ctor				
PFa	0.00000				
PFb	0.00000				
PFc	0.00000				
PFavg	0.00000				

Рисунок Б.9

б) Мощность (рис. Б.10):

Вкладка отображает значения текущих измеряемых мощностей:

- P, кВт активная мощность фазы нагрузки (P_A , P_B , P_C), P суммарная активная мощность;
- Q, квар реактивная мощность фазы нагрузки $(Q_A, Q_B, Q_C), Q$ суммарная реактивная мощность;
- S, к
В×А полная электрическая мощность фазы нагрузки (SA, SB, SC), S суммарная полная мощность.

Current, Voltage, PF Power Energy Quality Misc Deadband Setting Active	∼ M	odule 1	L - EM					
Active Pa, kW 0.00000 Pb, kW 0.00000 Pc, kW 0.00000 P, kW 0.00000 Reactive 0.00000 Qa, kvar 0.00000 Qb, kvar 0.00000 Qc, kvar 0.00000 Q, kvar 0.00000 Apparent 5a, kVA Sa, kVA 0.00000 Sc, kVA 0.00000 S, kVA 0.00000		Current, Volt	age, PF Power	Energy	Quality	Misc	Deadband	Settings
Pa, kW 0.00000 Pb, kW 0.00000 Pc, kW 0.00000 P, kW 0.00000 Reactive 0.00000 Qa, kvar 0.00000 Qb, kvar 0.00000 Qc, kvar 0.00000 Q, kvar 0.00000 Apparent 5a, kVA Sb, kVA 0.00000 Sc, kVA 0.00000		Active						
Pb, kW 0.00000 Pc, kW 0.00000 P, kW 0.00000 Reactive		Pa, kW	0.00000					
Pc, kW 0.00000 P, kW 0.00000 Reactive Qa, kvar 0.00000 Qb, kvar 0.00000 Qc, kvar 0.00000 Q, kvar 0.00000 Q, kvar 0.00000 Apparent		Pb, kW	0.00000					
P, kW 0.00000 Reactive		Pc, kW	0.00000					
Reactive Qa, kvar 0.00000 Qb, kvar 0.00000 Qc, kvar 0.00000 Q, kvar 0.00000 Q, kvar 0.00000 Apparent		P, kW	0.00000					
Qa, kvar 0.00000 Qb, kvar 0.00000 Qc, kvar 0.00000 Q, kvar 0.00000 Apparent		Reactive						
Qb, kvar 0.00000 Qc, kvar 0.00000 Q, kvar 0.00000 Apparent		Qa, kvar	0.00000					
Qc, kvar 0.00000 Q, kvar 0.00000 Apparent		Qb, kvar	0.00000					
Q, kvar 0.00000 Apparent Sa, kVA 0.00000 Sb, kVA 0.00000 Sc, kVA 0.00000 S, kVA 0.00000		Qc, kvar	0.00000					
Apparent Sa, kVA 0.00000 Sb, kVA 0.00000 Sc, kVA 0.00000 S, kVA 0.00000		Q, kvar	0.00000					
Sa, kVA 0.00000 Sb, kVA 0.00000 Sc, kVA 0.00000 S, kVA 0.00000		Apparent						
Sb, kVA 0.00000 Sc, kVA 0.00000 S, kVA 0.00000		Sa, kVA	0.00000					
Sc, KVA 0.00000 S, KVA 0.00000		Sb, kVA	0.00000					
S, KVA 0.00000		Sc, kVA	0.00000					
		S, kVA	0.00000					

Рисунок Б.10

в) Энергия (рис. Б.11):

Активная:

- W–, кВт.ч накопленное значение генерации активной энергии;
- *W*_{*A*-}, *W*_{*B*-}, *W*_{*C*-}, кВт·ч генерация активной энергии пофазно;
- W+, кВт·ч накопленное значение потребления активной энергии;
- *W*_{*A*+}, *W*_{*B*+}, *W*_{*C*+}, кВт·ч потребление активной энергии пофазно.

Реактивная:

- $W_{QA+}, W_{QB+}, W_{QC+},$ квар-ч потребление реактивной энергии пофазно;
- $-~W_{Q-},$ квар·ч- накопленное значение генерации реактивной энергии;
- $W_{QA-}, W_{QB-}, W_{QC-},$ квар-ч генерация реактивной энергии пофазно;
- $-~W_{Q+},$ квар·ч накопленное значение потребления реактивная
активной энергии.

Полная:

- W_{SA}, W_{SB}, W_{SC}, кВ·А·ч полная (суммарная) энергия фазы нагрузки;
- *W_S*, кВ·А·ч накопленное значение полной энергии.

Вес разряда:

- Pulse Qty, кВт·ч/квар·ч/кВ·А·ч вес разряда;
- Reset Values кнопка позволяет осуществить сброс счетчиков.

odule 1	L - EM			
Current, Voltage	e, PF Power	Energy Qua	ity Misc Dea	dband Settings
Active				
Wa+, kWh	0	Wa-, kWh	0	
Wb+, kWh	0	Wb-, kWh	0	
Wc+, kWh	0	Wc-, kWh	0	
W+, kWh	0	W-, kWh	0	
Reactive				
WQa+, kvarh	0	WQa-, kvarh	0	
WQb+, kvarh	0	WQb-, kvarh	0	
WQc+, kvarh	0	WQc-, kvarh	0	
WQ+, kvarh	0	WQ-, kvarh	0	
Apparent				
WSa, kVAh	0			
WSb, kVAh	0			
WSc, kVAh	0			
WS, kVAh	0			
Pulse Qty				
pulsQty, kWh/k Reset Values	warh/kVAh 0.0000	0		

Рисунок Б.11

- г) Показатели качества (рис. Б.12):
 - Frequency, Hz частота;
 - THD Current, %– коэффициент гармонических искажений тока пофазно (THD I_A , THD I_B , THD I_C) и THD I_{avg} , %– среднее значение;
 - THD voltage, % коэффициент гармонческих искажений напряжения пофазно (THD U_A , THD U_B , THD U_C) и THD U_{avg} , % среднее значение.
- д) Разное (рис. Б.13):
 - Symmetrical components симметричные компоненты:
 - *U*₁, В прямая составляющая напряжения;
 - *U*₂, В обратная составляющая напряжения;
 - U₀, В нулевая составляющая напряжения;
 - *K*_{U2}, % коэффициент обратной составляющей;
 - *K*_{*U*0}, % коэффициент нулевой составляющей;
 - Operating Hours счетчик моточасов пофазно (A, B, C) и общие моточасы;
 - Reset Values сброс счетчиков.
- е) Зоны нечувствительности (пределы, внутри которых измеряемая величина может изменяться, не вызывая отправку данных) (рис. Б.14). Эти пределы задаются, чтобы снизить чувствительность канала к изменяющимся условиям.

 Module 1 	L - EM					
Current, Volta	ge, PF Power	Energy	Quality	Misc	Deadband	Settings
Frequency						
F, Hz	0.00000					
THD Current						
THD Ia, %	0.00000					
THD lb, %	0.00000					
THD Ic, %	0.00000					
THD lavg, %	0.00000					
THD Voltage						
THD Ua, %	0.00000					
THD Ub, %	0.00000					
THD Uc, %	0.00000					
THD Uavg, %	0.00000					

dule 1 L - EN	1					
Current, Voltage, PF	Power	Energy	Quality	Misc	Deadband	Settings
Symmetrical compon	ients					
U1, V	0.00000					
U2, V	0.00000					
U0, V	0.00000					
KU2, %	0.00000					
KU0, %	0.00000					
Operating Hours						
Operating Hours A	0.00000					
Operating Hours B	0.00000					
Operating Hours C	0.00000					
Total Operating Hour	s 0.00000					
Reset values						

Рисунок Б.13

Зоны нечувствительности, Deadband, % задаются для параметров:

- I_A, I_B, I_C, I_d токи пофазно и дифференциальный ток;
- U, В напряжения;
- P,к
W/Q,kvar/S,kVA мощности;
- *PF*, *F*, Hz коэффициента мощности;
- $THD_{I},$ % коэффициента гармонических искажений тока;
- THD_U , % коэффициента гармонических искажений напряжения;
- -~K,~%– коэффициента симметричных компонентов.

dule 1 L - EM			
Current, Voltage, PF	Power Energy	Quality Misc	Deadband Settings
	Deadband Reference	Deadband, %	
la, lb, lc, A	0.10000	0.50000	apply
Id, A	0.10000	0.50000	apply
U, V	250.00000	0.50000	apply
P, kW/ Q, kvar/ S, kVA	0.02500	0.50000	apply
PF	1.00000	0.50000	apply
F, Hz	50.00000	0.50000	apply
THD I, %	100.00000	0.50000	apply
THD U, %	100.00000	0.50000	apply
K, %		0.50000	apply

Рисунок Б.14

- ж) Настройки (рис. Б.15):
 - Scheme из выпадающего списка выбирается схема подключения (4LN3, 4LL3, и т.д.);
 - Current range I_A , I_B , I_C из выпадающего списка выбирается диапазон токов пофазно (фазы A, B, C) (возможные варианты - H-5A/L-0,1A, H-1,25A/L-0,025A);
 - Current range I_d из выпадающего списка выбирается диапазон дифференциального тока (возможные значения - 0,5 мА, 0,125 мА);
 - СТК *I_A*, *I_B*, *I_C* указывается коэффициент трансформации трансформаторов тока нагрузки;
 - СТ
R I_d указывается коэффициент трансформации трансформаторов диф
ференциального тока;
 - VTR указывается коэффициент трансформации трансформаторов напряжения.

Module	1 L - EM	
Cur	rrent, Voltage, PF	er Energy Quality Misc Deadband Settings
Sc	heme	
Sc	heme	3LN2 v apply
Ing	out ranges	
Cu	irrent range la,lb,lc	H-5A/L-0.1A v apply
Cu	irrent range Id	0.125mA v apply
Tra	ansformation ratios	
CT	R la,lb,lc	3 apply 1 apply
СТ	'R Id	2 apply 1 apply
VT	R	8 apply 1 apply

Рисунок Б.15

MCU-F

Ручная настройка модуля MCU-F приведена в приложении Д.

WEB-интерфейс модуля содержит 6 основных вкладок и представлен на рисунке Б.16.

RTD (резистивный датчик температуры).

Во вкладке *Input* отображается состояние входа: *Value* указывает значение параметра, *Status* на его статус, *Scaled* – задано ли масштабирование значения входного сигнала во вкладке *Scaling*.

Вкладка *Deadband* включает два параметра: *Deadband reference* – диапазон значений входного сигнала, от которого берется *Deadband*, % (является константой);

Во вкладке *Settings* параметр *Sensor Type* позволяет выбирать тип датчика (РТ100, NTC и т.п.), *Filter Time* – задавать время фильтрации, в мс (0-240 мс).

Scaling – вкладка позволяет задать значения масштабирования входного сигнала (Scaling) и смещения сигнала для каждого входа (*Offset*):

Vмасштабированное=(Vполученное-Offset) \times Scaling.

- Module 8 MCU - F	Module 8 MCU - F
RTD AI CTI-1 CTI-2 DI DO	RTD AI CTI-1 CTI-2 DI DO
Input Deadband Settings Scaling	Input Deadband Settings Scaling
Value Status	Deadband Reference Deadband, %
1 inf Normal	1 0.00000 0.50000 apply
- Module 8 MCU - F	Module 8 MCU - F
RTD AI CTI-1 CTI-2 DI DO	
Input Deadband Settings Scaling	
Sensor Type Filter Time, ms	Input Deadband Settings Scaling
1 RTD П 50 арру 15 арру	Scaling Offset
RTD PI 100 RTD II 50	1 3.00000 apply 7.00000 apply
Application RTD Pt 1000 RTD Pt 1000 RTD 1000 RTD NI 100	

Рисунок Б.16

АІ (аналоговый вход для постоянного тока) (рис. Б.17)

Во вкладке *Input* отображается состояние входа: *Value* указывает значение тока, в мА, *Status* на статус входа, *Scaled* – задано ли масштабирование значения входного сигнала во вкладке *Scaling*.

Вкладка *Deadband* включает два параметра: *Deadband Reference* – диапазон значений входного сигнала, от которого берется *Deadband*, % (является константой).

Во вкладке *Settings* в *Sensor Type* выбирается диапазон датчика, в *Filter Time* задается время фильтрации, в мс (0-240 мс).

Scaling – вкладка позволяет задать значения масштабирования входного сигнала (Scaling) и смещения для каждого входа (Offset):

Vмасштабированное=(Vполученное-Offset) \times Scaling.

Module 8 MCU - F	Module 8 MCU - F
RTD AI CTI-1 CTI-2 DI DO	RTD AI CTI-1 CTI-2 DI DO
Input Deadband Settings Scaling	Input Deadband Settings Scaling
Sensor Type Filter Time, ms	Scaling Offset
1 0 - 20 ~ apply 10 apply	1 3.00000 apply 9.00000 apply

Рисунок Б.17

СТІ-1, СТІ-2 (вход для подключения трансформатора тока) (рис. Б.18).

Во вкладке *Input* отображается состояние входа: *Value* указывает значение параметра, а *Status* на его статус.

Вкладка *Deadband* включает два параметра: *Deadband Reference* – диапазон значений входного сигнала, от которого берется *Deadband*, % (является константой).

Во вкладке Settings задается время фильтрации Filter Time, в мс (0-240 мс).

Scaling – вкладка позволяет задать значения масштабирования входного сигнала (Scaling) и смещения для каждого входа (Offset).

Module 8 MCU - F	- Module 8 MCU - F
RTD AI CTI-1 CTI-2 DI DO	RTD AI CTI-1 CTI-2 DI DO
Input Deadband Settings Scaling	Input Deadband Settings Scaling
Value Status	Deadband Reference Deadband, %
1 0.00000 Normal	1 0.00000 0.50000 apply
Module 8 MCU - F	- Module 8 MCU - F
RTD AI CTI-1 CTI-2 DI DO	RTD AI CTI-1 CTI-2 DI DO
Input Deadband Settings Scaling	Input Deadband Settings Scaling
Input Deadband Settings Scaling Filter Time, ms	Input Deadband Settings Scaling Scaling Offset
Input Deadband Settings Scaling Filter Time, ms 1 20 apply	Input Deadband Settings Scaling Scaling Offset 1 1.00000 apply 0.00000 apply

Рисунок Б.18

DI (дискретный вход) (рис. Б.19).

Параметр Value указывает на наличие уровня логической «1» на входе.

Параметр *Invert Polarity* во вкладке Settings позволяет задать выходы, которые необходимо инвертировать, а во вкладке *Input* отобразить эти инвертированные выходы.

Индикатор работает независимо от инверсии (т.е. загорается всегда при пороге 90 В).

Во вкладке *Settings* параметр *Filter Time* задает время фильтрации для каждого входа, в мс (20-120 мс).

Module 8 MCU - F	- Module 8 MCU - F
RTD AI CTI-1 CTI-2 DI DO	RTD AI CTI-1 CTI-2 DI DO
Input Settings	Input Settings
Value Invert Polarity	Invert Polarity Filter Time, ms
1 🖲	1 🗹 20 apply
200	2 🗆 20 apply
300	3 🗆 20 apply
4 0 0	4 🗆 20 apply

Рисунок Б.19

DO (дискретный выход) (рис. Б.20).

На вкладке *Output* в параметре *Invert Polarity* отображаются выходы, которые были заданы инверсными во вкладке *Settings*.

В пункте Value включаются соответствующие выходы.

Error Mode – режим безопасности. Позволяет включить или выключить безопасный режим и установить безопасное состояние^{*}.

Filter Mask – возможность подключить на каждый выход маскирование управления*.

* - в системном ПО не обрабатывается, реализация в прикладном ПО.

Module 8 MCU - F	- Module 8 MCU - F
RTD AI CTI-1 CTI-2 DI DO	RTD AI CTI-1 CTI-2 DI DO
Output Settings Error Mode Filter Mask	Output Settings Error Mode Filter Mask
Value Invert Polarity	Invert Polarity
1 🗆 🔘	1
	2 🗆
2 🗆 0	2 0
2 0	
Module 8 MCU - F	 Module 8 MCU - F
Module 8 MCU - F	Module 8 MCU - F RTD AI CTI-1 CTI-2 DI DO
Module 8 MCU - F RTD AI CTI-1 CTI-2 DI DO Output Settings Error Mode Filter Mask	Module 8 MCU - F RTD AI CTI-1 CTI-2 DI DO Output Settings Error Mode Filter Mask
Module 8 MCU - F RTD AI CTI-1 CTI-2 DI DO Output Settings Error Mode Filter Mask Error Value Error Mode	Module 8 MCU - F RTD AI CTI-1 CTI-2 DI DO Output Settings Error Mode Filter Mask Filter Mask
Module 8 MCU - F RTD AI CTI-1 CTI-2 DI DO Output Settings Error Mode Filter Mask Error Value Error Mode 1	Module 8 MCU - F RTD AI CTI-1 CTI-2 DI DO Output Settings Error Mode Filter Mask Filter Mask 1

Рисунок Б.20

Приложение В (Справочное) Режимы управления линией электрообогрева

Режимы управления линией электрообогрева как контуром из греющих элементов и датчиков температуры (если есть):

«Постоянно выкл.» («Heater OFF»)

Постоянно выключена.

«Постоянно вкл.» («Heater ON»)

Постоянно включена.

«Дистанционный» («Remote»)

Управление осуществляется дистанционно через интерфейсы связи с устройством.

«Термостат» («Thermal Relay»)

Поддержание заданной температуры объекта путём двухпозиционного регулирования по сигналам датчика(ов) температуры.

«Фиксированный ШИМ» («Fixed PWM»)

Периодическое включение и отключение линии в зависимости от указанных периода и длительности рабочего цикла ШИМ.

«Пропорциональный ШИМ» («PWM Proporcional»)

Длительность рабочего цикла ШИМ линейно интерполируется между верхней и нижней уставками в зависимости от показаний датчика(ов) температуры (рис. В.1). Для каждой уставки температуры задается соответствующая ей длительность рабочего цикла.

Приложение Г (Справочное) Настройка параметров линии электрообогрева

Для отображения в WEB-интерфейсе настроек линий электрообогрева необходимо подключить модуль MCU-F, скачать и установить приложение Heatline (расположено на caйте https://prom-tec.net в каталоге, в соответствующем разделе).

Подключение

Для настройки параметров через Web-интерфейс необходимо кабелем USB-A (miniUSB) через USB-порт подключить модуль к ПК. Запустить на ПК браузер и ввести в адресную строку http://169.254.241.1. Откроется страница настройки, показанная на рисунке Г.1.

+ Module 8 MCU - F	
Application SW	
 Application SW Description 	
Application SW Control	
Heating	
Heating Line 1	
Heating Line 2	
Heating Line 3	
Heating Line 4	
Live View Alarms and	Trips Alarm Settings Settings HW Settings
Line 4	
Name	Line 1 apply
Alarm or Trip Present	•
Actual Control Mode	Heater Off
Safe Mode	0
Line Output State	0
Temperature PV	
Process Temperature, °C	nan
Temperature 1, °C	nan
Temperature 2, °C	nan
Temperature Limiter, °C	nan
Current PV	
Load Current, A	nan
Leakage Current, mA	nan
Misc PV	
PWM Duty Cycle, %	0.0000
Output On Count	93
Running Hours, h	0.27694
Control	
Command	✓ apply
Remote Output Control	

Рисунок Г.1

Модуль успешно подключен и готов к настройке.

Настройка основных режимов и просмотр параметров

Для настройки основных режимов на странице быстрой настройки необходимо перейти к разделу с индивидуальными параметрами модуля «Heating line» (рис. Г.1). Линия электрообогрева «Heating line» имеет следующие вкладки:

- «Live View» (Текущие параметры);
- «Alarms and Trips» (Просмотр флагов ошибок и защитного отключения);
- «Alarm Settings» (Настройки аварийных пределов);
- «Settings» (Настройки параметров линии);
- «HW Settings» (Настройка канала ввода-вывода).

Live View (Текущие параметры)

I

Во вкладке отображается текущее состояние линии электрообогрева (рис. Г.2). Содержит значения температур, токов, состояние выхода, текущий режим работы и другие параметры. Позволяет управлять выходом линии электрообогрева в режиме дистанционного управления. Также в данном разделе осуществляется квитирование (подтверждение) при аварийном отключении.

Live View	Alarms and	Trips	Alarm Setting	s S	ettings
Line 4					
Name		Line 1		apply	
Alarm or Tri	p Present	۲			
Actual Cont	rol Mode	Heater	Off		
Safe Mode		0			
Line Output	State	0			
Temperature	e PV				
Process Ter	mperature, °C	nan			
Temperatur	e 1, °C	nan			
Temperatur	e 2, °C	nan			
Temperatur	e Limiter, °C	nan			
Current PV					
Load Curre	nt, A	nan			
Leakage Cu	urrent, mA	nan			
Misc PV					
PWM Duty	Cycle, %	0.00000)		
Output On (Count	93			
Running Ho	ours, h	0.27694	1		
Control					
Command			~	apply	
Remote Ou	tput Control		,		

Рисунок Г.2

а) Группа Line отображает:

- «Name» задает имя настраиваемой линии;
- «Alarms or Trips Present» указывает на наличие аварии или аварийного отключения;
- «Actual Control Mode» отображает текущий режим работы линии электрообогрева (Heater off/Heater on/PWM);
- «Safe Mode» флаг нахождения в безопасном режиме, в который переводится линия электробогрева при невозможности определить температуру процесса (при неправильной настройке датчиков температуры или обрыве связи с датчиком);
- «Line Output State» флаг текущего состояния выхода.
- б) Группа «Temperature PV» отображает:
 - «Process Temperature, °C» текущую температуру процесса, вычисленную в соответствии с выбранным способом, °C;
 - «Temperature 1, °C» температуру датчика 1, °C;
 - «Temperature 2, °C» температуру датчика 2, °C;
 - «Temperature Limitter °C» температура лимитера, °C.
- в) Группа «Current PV» отображает:
 - «Load Current, А» ток нагрузки, А;
 - «Leakage Current, mA» ток утечки, mA.
- г) Группа «Misc PV» отображает пределы рабочего цикла в режиме «PWM»:
 - «PMW Duty Cycle, %» длительность рабочего цикла в решиме ШИМ в %;
 - «Output On Count» счетчик циклов;
 - «Running Hours, h» наработка в часах (моточасы).
- д) Группа «Control» позволяет осуществить команды:
 - «Trip Reset» квитирование при аварийном отключении;
 - «Running Hours Reset» сброс счетчика моточасов;
 - «Switch On Counter Reset» сброс счетчика циклов.
- e) Кнопка «Remote output control» при включении флага устанавливается управление через интерфейсы связи. Параметр отвечает за состояние канала в дистанционном режиме. При этом логика работы обеспечивает обработку ошибок и функционирование защит.

Alarms and Trips (Просмотр флагов ошибок и защитного отключения)

Вкладка просмотра флагов ошибок отображает основные ошибки и состояние защитного отключения по этим ошибкам (см. рисунок Г.3).

Live View	Alarms and T	Trips	Alarm Settings	s Sei
Temperature	Alarms	Alarm	Trip	
Process Terr	perature Fault			
Temperature	1 Fault	\bigcirc		
Temperature	1 High	\bigcirc	\bigcirc	
Temperature	1 Low	\bigcirc		
Temperature	2 Fault	\bigcirc		
Temperature	2 High	\bigcirc	0	
Temperature	2 Low	\bigcirc		
Temperature	Limiter, °C	Alarm	Trip	
Temperature	Limiter Fault	\bigcirc		
Temperature	Limiter High	\bigcirc	0	
Current Alari	ns	Alarm	Trip	
Load Curren	t High	\bigcirc	0	
Load Curren	t Low	\bigcirc		
Leakage Cu	rent High	\bigcirc	\bigcirc	
Output Off C	urrent High	\bigcirc		
Misc Alarms		Alarm		
Misconfig		\bigcirc		
Circuitbreake	er OF	\bigcirc		
Circuitbreake	er SD	\bigcirc		
Contactor Fa	ault	\bigcirc		
Output On C	ount	\bigcirc		
Running Hou	Jrs	0		

Рисунок Г.3

- a) «Temperature Alarms» аварии, связанные с температурой процесса и датчиками температуры:
 - «Process Temperature Fault» ошибка расчета температуры. Возникает при условии ошибки вычисления температуры процесса;
 - «Temperature 1 Fault» и «Temperature 2 Fault» обрыв, короткое замыкание, неправильное подключение датчика температуры;
 - «Тетрегаture 1 High» и «Тетрегаture 2 High» превышение верхней допустимой границы температуры датчиков. Если была включена блокировка по этому параметру, то флаг «Trip» также будет отображаться в случае аварии, сработает защитное отключение;
 - «Temperature 1 Low» и «Temperature 2 Low» выход за нижнюю допустимую границу температуры линии датчиков.
- б) «Temperature Limitter» аварии, связанные с допустимой температурой лимитера:

- «Temperature Limitter Fault» обрыв, короткое замыкание, неправильное подключение лимитера;
- «Temperature Limitter High» превышение верхней допустимой границы лимитера. Если была включена блокировка по этому параметру, то флаг «Trip» также будет отображаться в случае аварии.
- в) Группа «Misc Alarms» (прочие аварии) содержит:
 - флаг аварии «Misconfig», который возникает в случае неправильной настройки канала;
 - «Output On Count» возникает в случае превышения заданного максимального числа включений канала (циклов);
 - «Running Hours» сигнализирует о превышении моточасов, в часах;
 - «Circuitbreaker OF» автоматическое отключение тока;
 - «Circutbreaker SD» аварийное отключение автомата;
 - «Contactor Fault» сигнализирует об отказе контактора.

Alarm Settings (Настройки аварийных пределов)

Во вкладке (рис. Г.4) задаются предельные значения, при превышении которых возникает аварийный сигнал либо срабатывает ограничитель:

a) В группе параметров **«Temperature Trips Mode»** (защита по температуре) включить или выключить блокировку по температуре для датчиков температуры «Temperature 1» и «Temperature 2» и лимитера.

Heating Line 4				
			_	
Live View Alarms and T	rips Alar	m Settings	Se	ttings
Temperature Trips Mode				
Temperature 1	Enable	~	apply	
Temperature 2	Enable	~	apply	
Temperature Limiter	Enable	~	apply	
Current Trips Enable				
Load Current High	Disable	~	apply	
Leakage Current High	Enable	~	apply	
Temperature Alarm Setting	5			
Temperature High, °C	85.00000		apply	
Temperature Low, °C	5.00000		apply	
Temperature Limiter Trip Se	ettings			
Temperature Limiter, °C	90.00000		apply	
Current Alarm Settings				
Load Current High, A	30.00000		apply	
Load Current Low, A	0.20000		apply	
Leakage Current High, A	100.00000		apply	
Output Off Current High, A	200.00000		apply	
Misc Alarm Settings				
Alarm Hold Time, s	5		apply	
Output On Count	1000000		apply	
Running Hours, h	1.00000		apply	

Рисунок Г.4

- б) В группе параметров «**Current Trips Enable**» (режим защитного отключения по току) разрешить или запретить отключение при превышении:
 - «Load Current High» верхнего предела тока нагрузки;
 - «Leakage Current High» верхнего предела тока утечки.
- в) В группе параметров «**Temperature Alarm Settings**» (уставки температуры)задать пределы температуры:
 - верхний «Temperature High, °С»;
 - нижний «Temperature Low, °C».
- г) В группе параметров **«Temperature Limiter Trip Settings»** (настройки защитного отключения лимитера) задать: «Temperature Limiter», °С». Температура лимитера это максимальная температура, при превышении которой сработает ограничитель.
- д) В группе параметров «Current Alarm Settings» (защитное отключение по току)(рис. Γ.4) задать значения:
 - «Load Current High, А» верхнего предела тока нагрузки, А;
 - «Load Current Low, А» нижнего предела тока нагрузки, А;
 - «Leakage Current High, А» верхнего предела тока утечки, А;
 - «Output off Current High, А» верхнего предела тока при отключенной нагрузке, А.

e) В группе параметров «Misc Alarm Settings» необходимо задать:

- в поле «Alarm Hold Time, s» время удержания состояния аварии, в секундах;
- в поле «Output On Count» максимальное число подключений линии (циклов);
- в поле «Running Hours, h» максимальное время наработки, в часах.

Для сохранения каждого изменённого значения необходимо нажать кнопку "apply".

Settings (Настройки параметров работы линии электрообогрева)

Вид группы с настройками параметров работы линии электрообогрева показан на рисунке Г.5.

Режимы управления линией электрообогрева описаны в Приложении В.

eating Line 4		
Live View Alarms and Trips Alarm	Settings	HW Set
Control Mode Settings		
Enable		
Control Mode	PWM	✓ apply
PWM Thermal Relay PWM F	Proportional	
PWM		
PWM Period, s	apply	
PWM Duty Cycle, % 50.00000	apply	
Other Settings		
Startup Delay, s	100	apply
Safe Mode	PWM	✓ apply
DeadBand Settings		
Temperature Deadband Reference, °C	1000.00000	
Temperature Deadband, %	0.30000	apply
Current Deadband Reference, A	nan	
Current Deadband, %	0.60000	apply
Leakage Current Deadband Reference, m	A nan	
Leakage Current Deadband, %	0.50000	apply

Рисунок Г.5

Здесь необходимо в группе «Control Mode Settings» выбрать режим управления линией, который является безопасным для технологического объекта:

- a) «Heater Off» линия постоянно выключена;
- б) «Heater On» линия постоянно включена;
- в) «Remote» дистанционное управление линией через интерфейсы связи;
- г) «РWМ» ШИМ.

Переход в безопасный режим осуществляется в следующих случаях:

- а) текущий режим «Remote» и при этом отсутствует обмен через выбранный интерфейс;
- б) «Heater On» линия постоянно включена;
- в) текущий режим «Thermal Relay» или «Proportional PWM». Но невозможно вычислить температуру процесса (ошибка датчика/неверная настройка).

Режимы работы модуля:

- а) «ШИМ». Периодическое включение и откючение в зависимости от указанных пользователем периода и длительности рабочего цикла ШИМ. При выборе режима «PWM» в качестве рабочего или безопасного необходимо указать:
 - в поле «PWM Period, s» период ШИМ в секундах;
 - в поле «PWM Duty Cycle, %» рабочий цикл в процентах от периода ШИМ.
- б) «Thermal Relay» режим термостата (рис. Г.6). Модуль поддерживает заданную пользователем температуру объекта путем двухпозиционного регулирования. Задаются уставка температуры и зоны нечувствительности в положительном и отрицательном направлении. Пределы температуры включения/отключения определяются следующим образом:

 $T_{ON} = T_{SETPOINT} - Hysteresis_{NEGATIVE}$

 $T_{OFF} = T_{SETPOINT} + Hysteresis_{POSITIVE}$

где T_{ON}, T_{OFF} – пределы температур включения/отключения соответственно, °C; $T_{SETPOINT}$ – уставка температуры, °C;

 $Hysteresis_{POSITIVE}, Hysteresis_{NEGATIVE}$ – зоны нечувствительности в положительном и отрицательном направлении соответственно, °C.

Live View Alarms and Trips	Alarm S	settings	Setting	IS HW Se
Control Mode Settings				
Enable				
Control Mode		PWM		✓ apply
PWM Thermal Relay	PWM Pro	portional		
Thermal Relay				
Process Temperature Calc Mod	^{le} First		 ✓ app 	bly
Allow Incomplete Sensors				
Process Temp Set-point, °C	8.00000		ap	ply
Hysteresis Positive, °C	8.00000		ap	ply
Hysteresis Negative, °C	5.00000		ap	ply
Other Settings				
Startup Delay, s		100		apply
Safe Mode		PWM		✓ apply
DeadBand Settings				
Temperature Deadband Referen	ce, °C	1000.000	00	
Temperature Deadband, %		0.30000		apply
Current Deadband Reference, A		nan		
Current Deadband, %		0.60000		apply
Leakage Current Deadband Refe	erence, mA	nan		
Leakage Current Deadband %				

Рисунок Г.6

Если в качестве рабочего режима выбран «Thermal Relay», необходимо задать следующие значения:

- «Process Temperature Calc Mode» в выпадающем списке выбрать способ вычисления температуры процесса. Значения:
 - 1) «First» по первому датчику,
 - 2) «Second» по второму,
 - 3) «Average» среднее по двум,
 - 4) «Min» минимальный из двух,
 - 5) «Max» максимальный из двух.
- «Allow Incomplete Sensors» указать, разрешена ли работа при отказе одного из датчиков;
- в поле «Process Temp Set-point, °C» задать уставку температуры, °C;
- в поле «Hysteresis Positive, °C» указать зону нечувствительности в положительном направлении, °C;
- в поле «Hysteresis Negative, °C» указать зону нечувствительности в отрицательном направлении, °C.

в) «PWM Proportional» – пропорциональный ШИМ (рис. Г.7). Длительность рабочего цикла ШИМ линейно интерполируется между двумя точками: верхней и нижней уставками. Для каждой уставки задаются температура и длительности рабочего цикла.

Live View	Alarms and Trips	Alar	m S	ettings	Settings		HW Set
Control Mod	de Settings						
Enable							
Control Mod	de			PWM		~	apply
PWM	Thermal Relay	PWM	Prop	portional]		
PWM Prop	oortional						
PWM Peri	od, s		6			арр	ly
Proportion	al High Temp, °C		5.0	0000		app	ly
Proportion	al High PWM Duty C	ycle, %	5.0	0000		app	ły
Proportion	al Low Temp, °C		-30	.00000		app	ly
Proportion	al Low PWM Duty Cy	/cle, %	100	0.0000		app	ly
Other Settir	igs						
Startup Dela	ay, s			100			apply
Safe Mode				PWM		~	apply
DeadBand	Settings						
Temperatur	e Deadband Referen	ce, °C		1000.000	00		
Temperatur	e Deadband, %			0.30000			apply
Current Dea	adband Reference, A			nan			
Current Dea	adband, %			0.60000			apply
Leakage Cu	urrent Deadband Refe	erence,	mA	nan			
Leakage Cu	urrent Deadband, %			0.50000			apply

Рисунок Г.7

При выборе режима «PWM Proportional» в качестве рабочего, необходимо указать:

- в поле «PMW Period, s» длительность периода ШИМ, с;
- в поле «Proportional High Temp, °C» верхнюю уставку температуры, °C;
- в поле «Proportional High PWM Duty Cycle, %» рабочий цикл в верхней уставке температуры, %;
- в поле «Proportional Low Temp, °С» нижнюю уставку температуры, °С;
- в поле «Proportional Low PWM Duty Cycle, %» рабочий цикл в нижней уставке температуры, %.

В настройках каждого режима в группе «Other Settings» требуется задать:

- «Startup Delay, s» – задержку первого включения;

 «Safe Mode» – выбрать безопасный режим при невозможности определить температуру процесса (при неправильной настройке датчиков температуры или обрыве связи с датчиком). На выбор значения «Heater Off», «Heater On» или «PWM».

В группе **«DeadBand Settings»** задаются параметры зон нечувствительности. Зона нечувствительности – пределы, внутри которых измеряемая величина может изменяться, не вызывая изменения состояния канала. Эти пределы задаются, чтобы снизить чувствительность канала к изменяющимся условиям:

- «Temperature DeadBand Reference, °C» опорный диапазон нечувствительности по температуре, °C;
- «Temperature DeadBand, %» задать зону нечувствительности по температуре в %;
- «Current DeadBand Reference, А» опорный диапазон нечувствительности по току нагрузки, А;
- «Current DeadBand, %» задать зону нечувствительности по току нагрузки в %;
- «Leakage Current DeadBand Reference, mA» опорный диапазон по току утечки, mA;
- «Leakage Current DeadBand, %» зону нечувствительности по току утечки в %.

Для сохранения каждого изменённого значения необходимо нажать кнопку "apply".

HW Settings (Настройка канала ввода-вывода)

В данной гр	уппе настроек	(рис. Г.8)) необходимо	указать:
-------------	---------------	------------	--------------	----------

Live View Alarms and Trips	Alarm Settings	Settings HW Settin	ngs
Line Settings			
Temperature 1 Select	Module 2 🗸	Channel 3 🗸	apply
Temperature 2 Select	Module 2 🗸	Channel 5 🗸 🗸	apply
Temperature Limiter Select	Module 4 🗸	Channel 3 🗸	apply
Output Select	Module 4 🗸	Channel 13 🗸	apply
Load Current Input	Module 0 🗸	Not Selected 🗸	apply
Leakage Current Input	Module 0 🗸	Not Selected	apply
Circuitbreaker OF Input	Module 0 🗸	Not Selected	apply
Circuitbreaker SD Input	Module 0 🗸	Not Selected	apply
Contactor input	Module 0 🗸	Not Selected	apply
Alarm Output Select	Module 0 🗸	Not Selected	apply
Minimum Output Hold Time, s	15	apply	

Рисунок Г.8 – HW Settings (Настройка канала ввода-вывода)

- в поле «Temperature 1 Select» выбор датчика температуры 1;
- «Temperature 2 Select» выбор датчика температуры 2;
- «Temperature Limiter Select» выбор лимитера;
- «Output Select» выбор выхода;
- «Load Current Input» вход тока нагрузки;
- «Leakage Current Input» вход тока утечки;
- «Circuitbreaker OF Input» вход отключения автомата;
- «Circutbreacer SD Input» вход аварийного отключения автомата;
- «Contactor input» вход контактора;
- «Alarm Output Select» выбор выхода аварии;
- «Minimum Output Hold Time, s» минимальное время удержания выхода, сек.

Для сохранения каждого изменённого значения необходимо нажать кнопку "apply".

После внесения необходимых изменений линия электрообогрева готова к работе.

Приложение Д (Справочное) Ручная настройка модуля расширения MCU-F

Настоящий документ содержит краткую информацию, необходимую для настройки модуля-регулятора MCU-F.

Ручная настройка и просмотр текущего состояния линии электрообогрева осуществляется с помощью клавиатуры на лицевой панели устройства (рис. Д.1). Параметры отображаются на встроенном графическом LED-дисплее. Перемещение по основным вкладкам меню происходит с помощью кнопок «вверх»-«вниз» (просмотр текущих значений) и «вход»-«выход» (настройка значений параметров линии).

Рисунок Д.1 – Внешний вид модуля

Для ручной настройки не требуется подключение к сети.

Просмотр текущих значений параметров линии

С помощью кнопки «вниз» можно увидеть вкладки с заданными параметрами линии электрообогрева:

- а) Главный экран отображает текущую температуру линии и режим работы;
- б) «Trip» флаги защитного отключения;
- в) «Alarm» флаги аварий, возникших в связи с превышением заданных пределов;
- г) Другие текущие значения.

Главный экран

На дисплее высвечиваются текущие температура линии, режим работы, а также идет ли сейчас нагрев (рис. Д.2).

Рисунок Д.2 – Главный экран устройства

Двойным щелчком по кнопке «вход» задаются режимы работы линии (рис. Д.3):

Рисунок Д.3 – Текущие значения

- a) «Mode» режим работы (выбрать нужное из выпадающего меню: ON/OFF/Relay/PWM/PWM Prop);
- б) «Settings» настройки режима.

При выборе режимов Relay, PWM или PWM Prop через Settings – задать дополнительные параметры:

Для Relay (режим термостата) доступны численные значения следующих параметров:

- «TSet» уставка температуры, °С;
- «Histeresis+» положительный гистерезис, °С;
- «Histeresis-» отрицательный гистерезис, °С.

Для РWM (режим ШИМ):

- «Period» период ШИМ, сек;
- « %» рабочий цикл ШИМ.

Для PWM Prop (режим пропорционального ШИМ):

- «T hi» верхняя граница температуры, °C;
- «Т Lo» нижняя граница температуры, °С;
- «PWM hi» рабочий цикл для верхней границы, °С;
- «PWM Lo» рабочий цикл для нижней границы, °С;
- «Period» период ШИМ, сек.

После установки значений нажать кнопку «выход». Сохранить изменения, выбрав «Yes» в окне «Save?».

Trip (флаги защитного отключения)

Вкладка отображает состояние защитного отключения по основным ошибкам (см. рисунок Д.4).

×.	TRIP	
T I	□ TLim □ ILkg	\square

Рисунок Д.4 – Флаги защитного отключения

В случае ошибки высветится флаг напротив параметра, вышедшего за установленные пределы:

- «Т» превышение верхней допустимой температуры датчика;
- «I» превышение допустимого предела тока;
- «Tlim» превышение верхней допустимой границы температуры лимитера;
- «ILkg» превышение допустимого предела тока.

Для сброса ошибки необходимо нажать кнопку «вход» и в выпадающем меню «Mode» нажать «Reset» (см. рисунок Д.5).

Рисунок Д.5 – Сброс ошибки

Alarm (флаги аварий, возникших в связи с превышением заданных пределов)

Вкладка отображает флаги аварий, возникших в связи с превышением заданных аварийных пределов. (см. рисунок Д.6). В случае обнаружения ошибки высветится отметка напротив данного параметра:

Рисунок Д.6 – Флаги ошибок

- «TH» превышение верхней допустимой температуры датчика;
- «IH» превышение допустимого предела тока;
- «TlimH» превышение верхней допустимой границы температуры лимитера;
- «ILkgH» превышение допустимого предела тока;
- «Misconf» неправильная настройка устройства;
- «OF» автоматическое отключение тока;
- «SD» аварийное отключение автомата;
- «CFault» отказ контактора;
- «OnSWHi» превышение числа циклов запуска устройства;
- «HoursHi» превышение числа моточасов.

Во вкладке отражены следующие значения (см. рисунок Д.7):

- «IP On count» количество циклов работы линии;
- «Run hours, h» количество отработанных моточасов;
- «Tlim, $^{\circ}C$ » –температура лимиттера;
- «TPV, °C» температура процесса;
- «ILkg, uA» ток утечки;
- «IPV, А» ток нагрузки.

Рисунок Д.7 – Текущие значения

Настройка основных параметров линии

Для перехода к вкладке с настройками основных параметров линии нужно нажать кнопку «выход» (рис. Д.8):

Рисунок Д.8 – Настройка основных параметров

- a) «Trip Enbl» включение защитных режимов;
- б) «T Limits» просмотр флагов защитного отключения;

- в) «I Limits» просмор флагов аварий, возникших в связи с превышением заданных аварийных пределов;
- г) «Alarm Set» настройки аварийных пределов;
- д) «Misc Set» прочие настройки аварий;
- e) «Modbus Set» настройки протокола связи с интерфейсом RS-485;
- ж) «System Set» настройки дисплея.

Trip Enbl (включение защитных режимов)

Для установки защитных режимов линии используется следующая вкладка (рис. Д.9):

Рисунок Д.9 – Включение защитных режимов линии

- «Т1 Н» защитное отключение по верхнему пределу температуры;
- «IH» защитное отключение по верхнему пределу тока нагрузки;
- «TlimH» защитное отключение по верхней допустимой границе температуры лимитера;
- «ILkgH» защитное отключение при превышении допустимого предела тока.

Для выбора необходимого защитного режима нужно проставить флаги. Чтобы снять или проставить флаг на каждый параметр нужно переместить на него курсор кнопками «вверх» или «вниз» и активировать выбор кнопкой «вход». Выбрать необходимое значение кнопкой «вниз» и зафиксировать результат кнопкой «вход».

T Limits (просмотр флагов защитного отключения)

Для задания предельных значений температуры линии доступны трехзначные значения и знаки +, — перед ними (рис. Д.10):

Рисунок Д.10 – Установка предельных значений по температуре

- «Ні» верхний предел уставки температуры, °С;
- «Low» нижний предел уставки температуры, °C;
- «Lim Hi» верхний предел температуры лимитера, °С.

После установки значений нажать кнопку «выход». Сохранить изменения, выбрав «Yes» в окне «Save?».

I Limits (просмор флагов аварий, возникших в связи с превышением заданных аварийных пределов)

Установка значений защитного отключения по току осуществляется для следующих параметров (рис. Д.11):

Рисунок Д.11 – Установка предельных значений по току

- «Ні» верхний предел тока нагрузки, А;
- «Low» нижний предел тока нагрузки, А;
- «Leak» верхний предел тока утечки, А;
- «Off Hi» верхний предел тока нагрузки при отключенной нагрузке, А.

После установки значений нажать кнопку «выход». Сохранить изменения, выбрав «Yes» в окне «Save?».

Вкладка настройки аварийных пределов, доступны числовые значения для следующих параметров (рис. Д.12):

Рисунок Д.12 – Настройки аварийных пределов

- «HoldTime» минимальное время удержания аварии, сек;
- «On Cnt» максимальное количество циклов;
- «Run Hrs» максимальное количество моточасов, ч.

После установки значений нажать кнопку «выход». Сохранить изменения, выбрав «Yes» в окне «Save?».

Misc Set (прочие настройки аварий)

- «Delay» задержка первого включения, сек;
- «SafeMode» безопасный режим (доступны варианты «On», «Off», «PWM»).

После установки значений нажать кнопку «выход». Сохранить изменения, выбрав «Yes» в окне «Save?».

Рисунок Д.13 – Прочие настройки аварий

Настройки протокола передачи данных через интерфейс RS-485 (рис. Д.14):

Рисунок Д.14 – Настройки протокола связи по протоколу RS-485

- «Speed» скорость соединения по протоколу RS-485 (выбрать из выпадающего меню нужный вариант);
- «Par» четность по протоколу RS-485;
- «Adr» адрес Slave устройства в сети.

После установки значений нажать кнопку «выход». Сохранить изменения, выбрав «Yes» в окне «Save?».

System Set (Системные настройки)

Системные настройки (рис. Д.15):

Brightness	000

Рисунок Д.15 – Системные настройки

В системных настройках доступен один параметр - яркость экрана – «Brightness» (числовое значение выбрать с помощью кнопки «вверх»).

После установки значений нажать кнопку «выход». Сохранить изменения, выбрав «Yes» в окне «Save?».

После внесения необходимых изменений модуль готов к работе.

Россия, г. Уфа, ул. 50 лет Октября 15/1 Тел.: +7 (812) 245-05-62 Тех. поддержка: +7 (812) 245-05-62 доп. 512 support@prom-tec.net www.prom-tec.net